Have a personal or library account? Click to login

Studies on molecular epidemiology of ESβL-producing Klebsiella pneumoniae isolated from patients hospitalized in a specialist hospital in southern Poland

Open Access
|Dec 2021

References

  1. Chong Y., Shimoda S., Shimono N. (2018). Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol., 61: 185-188.
  2. Compain F., Babosan A., Brisse S., Genel N., Audo J., Ailloud F., Kassis-Chikhani N., Arlet G., Decré D. (2014). Multiplex PCR for detection of seven virulence factors and K1/K2 capsular serotypes of Klebsiella pneumoniae. J. Clin. Microbiol., 52: 4377-4380.
  3. Wyres K.L., Holt K.E. (2018). Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria. Curr. Opin. Microbiol., 45: 131-139.
  4. Baraniak A., Izdebski R., Fiett J., Sadowy E., Adler A., Kazma M., Salomon J., Lawrence C., Rossini A., Salvia A., et al. (2013). Comparative population analysis of Klebsiella pneumoniae strains with extended-spectrum β-lactamases colonizing patients in rehabilitation centers in four countries. Antimicrob. Agents Chemother., 57: 1992-1997.
  5. Paterson D.L., Bonomo R.A. (2005). Clinical update extended-spectrum β-lactamases : A clinical update. Clin. Microbiol. Rev., 18: 657-686.
  6. Wang Y., Zhang Q., Jin Y., Jin X., Yu J., Wang K. (2019). Epidemiology and antimicrobial susceptibility profiles of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae and Escherichia coli in China. Braz. J. Microbiol., 50: 669-675.
  7. Castanheira M., Deshpande L.M., Mendes R.E., Canton R., Sader H.S., Jones R.N. (2019). Variations in the occurrence of resistance phenotypes and carbapenemase genes among Enterobacteriaceae isolates in 20 years of the SENTRY antimicrobial surveillance program. Open Forum Infect. Dis., 6: S23-S33.
  8. Morris D., O’Connor M., Izdebski R., Corcoran M., Ludden C.E., McGrath E., Buckley V., Cryan B., Gniadkowski M., Cormican M. (2016). Dissemination of clonally related multidrug-resistant Klebsiella pneumoniae in Ireland. Epidemiol. Infect., 144: 443-448.
  9. The European Committee on Antimicrobial Susceptibility Testing: Breakpoint tables for interpretation of MICs and zone diameters. Version 9.0, 2019. http://www.eucast.org
  10. CLSI: Performance Standards for Antimicrobial Susceptibility Testing. (2018). 28th ed. CLSI supplement M100. Wayne PA: Clinical and Laboratory Standards Institute.
  11. Magiorakos A., Srinivasan A., Carey R.B., Carmeli Y., Falagas M.E., Giske C.G., Harbarth S., Hindler J.F., Kahlmeter G., Olsson-Liljequist B., et al. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 18: 268-281.
  12. Latifpour M., Gholipour A., Damavandi M.S. (2016). Prevalence of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae isolates in nosocomial and community-acquired urinary tract infections. Jundishapur J. Microbiol., 9: e31179.
  13. Xu L., Ensor V., Gossain S., Nye K., Hawkey P. (2005). Rapid and simple detection of blaCTX-M genes by multiplex PCR assay. J. Med. Microbiol., 54: 1183-1187.
  14. Han H., Zhou H., Li H., Gao Y., Lu Z., Hu K., Xu B. (2013). Optimization of pulse-field gel electrophoresis for subtyping of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health, 10: 2720-2731.
  15. Tenover F.C., Arbeit R.D., Goering R.V., Mickelsen P.A., Murray B.E., Persing D.H., Swaminathan B. (1995). Interpreting chromosomal DNA restriction patterns produced by pulsed- field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol., 33: 2233-2239.
  16. Rodrigues C., Machado E., Ramos H., Peixe L., Novais Â. (2014). Expansion of ESBL-producing Klebsiella pneumoniae in hospitalized patients: A successful story of international clones (ST15, ST147, ST336) and epidemic plasmids (IncR, IncFIIK). Int. J. Med. Microbiol., 304: 1100-1108.
  17. Ny S., Kozlov R., Dumpis U., Edquist P., Gröndahl-Yli-Hannuksela K., Kling A.M., Lis D.O., Lübbert C., Pomorska-Wesołowska M., Palagin I., et al. (2018). Large variation in ESBL-producing Escherichia coli carriers in six European countries including Russia. Eur. J. Clin. Microbiol. Infect. Dis., 37: 2347-2354.
  18. Mrowiec P., Klesiewicz K., Małek M., Skiba-Kurek I., Sowa-Sierant I., Skałkowska M., Budak A., Karczewska E. (2019). Antimicrobial susceptibility and prevalence of extended-spectrum beta-lactamases in clinical strains of Klebsiella pneumoniae isolated from pediatric and adult patients of two Polish hospitals. New Microbiol., 42: 197-204.
  19. Ojdana D., Sacha P., Wieczorek P., Czaban S., Michalska A., Jaworowska J., Jurczak A., Poniatowski B., Tryniszewska E. (2014). The occurrence of blaCTX-M, blaSHV, and blaTEM genes in extended-spectrum β-lactamase-positive strains of Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis in Poland. Int. J. Antibiot., 2014: 935842.
  20. Sękowska A., Gospodarek E., Kamińska D. (2012). Antimicrobial susceptibility and genetic similarity of ESBL-positive Klebsiella pneumoniae strains. Arch. Med. Sci., 8: 993-997.
  21. Ranjbar R., Kelishadrokhi A.F., Chehelgerdi M. (2019). Molecular characterization, serotypes and phenotypic and genotypic evaluation of antibiotic resistance of the Klebsiella pneumoniae strains isolated from different types of hospital-acquired infections. Infect. Drug Resist., 12: 603-611.
  22. Lee J., Oh C.E., Choi E.H., Lee H.J. (2013). The impact of the increased use of piperacillin/tazobactam on the selection of antibiotic resistance among invasive Escherichia coli and Klebsiella pneumoniae isolates. Int. J. Infect. Dis., 17: e638-e643.
  23. Livermoore D.M. (1995). Beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev., 8: 557-584.
  24. de Walthoffen S.W., Mlynarczyk A., Sawicka-Grzelak A., Durlik M., Paczek L., Chmura A., Ciszek M., Chabros L., Baczkowska T., Młynarczyk G. (2011). Strains of Klebsiella pneumoniae producing extended spectrum beta-lactamases, isolated from organ recipients. Transplant Proc., 43; 3128-3129.
  25. Paterson D.L., Hujer K.M., Hujer A.M., Yeiser B., Bonomo M.D., Rice L.B., Bonomo R.A., International Klebsiella Study Group (2003). Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: Dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob. Agents Chemother., 47: 3554-3560.
  26. Ferreira R.L., Da Silva B.C., Rezende G.S., Nakamura-Silva R., Pitondo-Silva A., Campanini E.B., Brito M.C., da Silva E.M., de Melo Freire C.C., da Cunha A.F., da Silva Pranchevicius M.C. (2019). High prevalence of multidrug-resistant Klebsiella pneumoniae harboring several virulence and β-lactamase encoding genes in a Brazilian intensive care unit. Front. Microbiol., 9: 3198.
  27. Brisse S., Fevre C., Passet V., Issenhuth-Jeanjean S., Tournebize R., Diancourt L., Grimont P. (2009). Virulent clones of Klebsiella pneumoniae: Identification and evolutionary scenario based on genomic and phenotypic characterization. PLoS One, 4: e4982.
  28. Lascols C., Peirano G., Hackel M., Laupland K.B., Pitout J.D. (2013). Surveillance and molecular epidemiology of Klebsiella pneumoniae isolates that produce carbapenemases: First report of OXA-48-like enzymes in North America. Antimicrob. Agents Chemother., 57: 130-136.
Language: English
Page range: 970 - 979
Submitted on: Dec 2, 2020
Accepted on: Aug 9, 2021
Published on: Dec 30, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Dorota Ochońska, Aldona Olechowska-Jarząb, Anna Dobrut, Małgorzata Bulanda, Monika Brzychczy-Włoch, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.