So E.C., Mattheis C., Tate E.W., Frankel G., Schroeder G.N.: Creating a customized intracellular niche: Subversion of host cell signaling by Legionella type IV secretion system effectors. Can. J. Microbiol., 2015; 61: 617-635
Brzostek K., Karwicka E.: Mechanizmy sekrecji bakterii Gramujemnych – system sekrecji II typu, sekrecja w biogenezie pilusów, autotransport. Post. Mikrobiol., 2006; 45: 135-151
White R.C., Cianciotto N.P.: Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: The Legionella type II secretion paradigm. Microb. Genom., 2019; 5: e000273
Korotkov K.V., Sandkvist M.: Architecture, function, and substrates of the type II secretion system. EcoSal. Plus., 2019; 8: 10.1128/ ecosalplus.ESP-0034-2018
Boamah D.K., Zhou G., Ensminger A.W., O’Connor T.J.: From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol., 2017; 7: 477
Chaudhry R., Sreenath K., Agrawal S.K., Valavane A.: Legionella and Legionnaires’ disease: Time to explore in India. Indian. J. Med. Microbiol., 2018; 36: 324-333
Ditommaso S., Giacomuzzi M., Arauco Rivera S.R., Raso R., Ferrero P., Zotti C.M.: Virulence of Legionella pneumophila strains isolated from hospital water system and healthcare-associated Legionnaires’ disease in Northern Italy between 2004 and 2009. BMC Infect. Dis., 2014; 14: 483
Gomez-Valero L., Rusniok C., Carson D., Mondino S., Pérez-Cobas A.E., Rolando M., Pasricha S., Reuter S., Demirtas J., Crumbach J. i wsp.: More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. USA, 2019; 116: 2265-2273
Correia A.M., Ferreira J.S., Borges V., Nunes A., Gomes B., Capucho R., Gonçalves J., Antunes D.M., Almeida S., Mendes A. i wsp.: Probable person-to-person transmission of Legionnaires’ disease. N. Engl. J. Med., 2016; 374: 497-498
De Giglio O., Fasano F., Diella G., Lopuzzo M., Napoli C., Apollonio F., Brigida S., Calia C., Campanale C., Marzella A. i wsp.: Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001–2017). Environ. Res., 2019; 178: 108721
Lin S.Y., Chen Y.H., Lu P.L., Tsai Y.M., Chen T.C.: An underestimated co-infection: Swine influenza and pneumonia due to Legionella pneumophila. Am. J. Med. Sci., 2016; 352: 314-316
Fuche F., Vianney A., Andrea C., Doublet P., Gilbert C.: Functional type 1 secretion system involved in Legionella pneumophila virulence. J. Bacteriol., 2015; 197: 563-571
Qin T., Zhou H., Ren H., Liu W.: Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity. Front. Microbiol., 2017; 8: 388
Nakano N., Kubori T., Kinoshita M., Imada K., Nagai H.: Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog., 2010; 6: e1001129
White R.C., Truchan H.K., Zheng H., Tyson J.Y., Cianciotto N.P.: Type II secretion promotes bacterial growth within the Legionella-containing vacuole in infected amoebae. Infect. Immun., 2019; 87: e00374-19
Abby S.S., Cury J., Guglielmini J., Néron B., Touchon M., Rocha E.P.: Identification of protein secretion systems in bacterial genomes. Sci. Rep., 2016; 6: 23080
Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G.: Secretion systems in Gramnegative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol., 2015; 13: 343-359
Lu C., Korotkov K.V., Hol W.G.: Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J. Struct. Biol., 2014; 187: 223-235
Ghosal D., Kim K.W., Zheng H., Kaplan M., Truchan H.K., Lopez A.E., McIntire I.E., Vogel J.P., Cianciotto N.P., Jensen G.J.: In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat. Microbiol., 2019; 4: 2101-2108
Thomassin J.L., Santos Moreno J., Guilvout I., Tran Van Nhieu G., Francetic O.: The trans-envelope architecture and function of the type 2 secretion system: New insights raising new questions. Mol. Microbiol., 2017; 105: 211-226
Gray M.D., Bagdasarian M., Hol W.G., Sandkvist M.: In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol. Microbiol., 2011; 79: 786-798
López-Castilla A., Thomassin J.L., Bardiaux B., Zheng W., Nivaskumar M., Yu X., Nilges M., Egelman E.H., Izadi-Pruneyre N., Francetic O.: Structure of the calcium-dependent type 2 secretion pseudopilus. Nat. Microbiol., 2017; 2: 1686-1695
Guilvout I., Chami M., Engel A., Pugsley A.P., Bayan N.: Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J., 2006; 25: 5241-5249
Viarre V., Cascales E., Ball G., Michel G.P., Filloux A., Voulhoux R.: HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem., 2009; 284: 33815-33823
Yahashiri A., Jorgenson M.A., Weiss D.S.: The SPOR domain, a widely conserved peptidoglycan binding domain that targets proteins to the site of cell division. J. Bacteriol., 2017; 199: e00118-17
Truchan H.K., Christman H.D., White R.C., Rutledge N.S., Cianciotto N.P.: Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane. mBio, 2017; 8: e00870-17
Denks K., Vogt A., Sacchelaru I., Petriman N.A., Kudva R., Koch H.G.: The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol. Membr. Biol., 2014; 31: 58-84
Lycklama A., Nijeholt J.A., Driessen A.J.: The bacterial Sec-translocase: Structure and mechanism. Philos. Trans. R. Soc. B. Lond. B Biol. Sci., 2012; 367: 1016-1028
Tsukazaki T., Mori H., Echizen Y., Ishitani R., Fukai S., Tanaka T., Perederina A., Vassylyev D.G., Kohno T., Maturana A.D., Ito K., Nureki O.: Structure and function of a membrane component SecDF that enhances protein export. Nature, 2011; 474: 235-238
Dalbey R.E., Wang P., van Dijl J.M.: Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol. Mol. Biol. Rev., 2012; 76: 311-330
Oertel D., Schmitz S., Freudl R.: A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS One, 2015; 10: e0123413
Sargent F., Stanley N.R., Berks B.C., Palmer T.: Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem., 1999; 274: 36073-36082
Simone D., Bay D.C., Leach T., Turner R.J.: Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One, 2013; 8: e78742
Blaudeck N., Kreutzenbeck P., Müller M., Sprenger G.A., Freudl R.: Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem., 2005; 280: 3426-3432
Alami M., Lüke I., Deitermann S., Eisner G., Koch H.G., Brunner J., Müller M.: Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell, 2003; 12: 937-946
Lausberg F., Fleckenstein S., Kreutzenbeck P., Fröbel J., Rose P., Müller M., Freudl R.: Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One, 2012; 7: e39867
Gohlke U., Pullan L., McDevitt C.A., Porcelli I., de Leeuw E., Palmer T., Saibil H.R., Berks B.C.: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc. Natl. Acad. Sci. USA, 2005; 102: 10482-10486
Mori H., Cline K.: A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol., 2002; 157: 205-210
Peabody C.R., Chung Y.J., Yen M.R., Vidal-Ingigliardi D., Pugsley A.P., Saier M.H.: Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology, 2003; 149: 3051-3072
Francetić O., Pugsley A.P.: Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol., 2005; 187: 7045-7055
Liles M.R., Viswanathan V.K., Cianciotto N.P.: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect. Immun., 1998; 66: 1776-1782
Liles M.R., Edelstein P.H., Cianciotto N.P.: The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol. Microbiol., 1999; 31: 959-970
Hales L.M., Shuman H.A.: Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect. Immun. 1999; 67: 3662-3666
Rossier O., Cianciotto N.P.: Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect. Immun., 2001; 69: 20922098
Rossier O., Starkenburg S.R., Cianciotto N.P.: Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect. Immun., 2004; 72: 310-321
Cazalet C., Rusniok C., Bruggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C., Vandenesch F. i wsp.: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet., 2004; 36: 1165-1173
Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S.M., Asamani G., Hill K., Nuara J., Feder M. i wsp.: The genomic sequence of the accidental pathogen Legionella pneumophila. Science, 2004; 305: 1966-1968
Glöckner G., Albert-Weissenberger C., Weinmann E., Jacobi S., Schunder E., Steinert M., Hacker J., Heuner K.: Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int. J. Med. Microbiol., 2008; 298: 411-428
DebRoy S., Dao J., Söderberg M., Rossier O., Cianciotto N.P.: Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. USA, 2006; 103: 19146-19151
White R.C., Gunderson F.F., Tyson J.Y., Richardson K.H., Portlock T.J., Garnett J.A., Cianciotto N.P.: Type II secretiondependent aminopeptidase LapA and acyltransferase PlaC are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas. mBio, 2018; 9: e00528-18
Pearce M.M., Cianciotto N.P.: Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol. Lett., 2009; 300: 256-264
Herrmann V., Eidner A., Rydzewski K., Blädel I., Jules M., Buchrieser C., Eisenreich W., Heuneret K.: GamA is a eukaryoticlike glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int. J. Med. Microbiol., 2011; 301: 133-139
Rossier O., Dao J., Cianciotto N.P.: The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl. Environ. Microbiol., 2008; 74: 753-761
Aragon V., Kurtz S., Cianciotto N.P.: Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect. Immun., 2001; 69: 177-185
Tyson J.Y., Vargas P., Cianciotto N.P.: The novel Legionella pneumophila type II secretion substrate NttC contriubtes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiology, 2014; 160: 2732-2744
Flieger A., Gong S., Faigle M., Stevanovic S., Cianciotto N.P., Neumeister B.: Novel lysophospholipase A secreted by Legionella pneumophila. J. Bacteriol., 2001; 183: 2121-2124
Flieger A., Neumeister B., Cianciotto N.P.: Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect. Immun., 2002; 70: 6094-6106
McCoy-Simandle K., Stewart C.R., Dao J., DebRoy S., Rossier O., Bryce P.J., Cianciotto N.P.: Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect. Immun., 2011; 79: 1984-1997
Rossier O., Dao J., Cianciotto N.P.: A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology, 2009; 155: 882-890
Hiller M., Lang C., Michel W., Flieger A.: Secreted phospholipases of the lung pathogen Legionella pneumophila. Int. J. Med. Microbiol., 2018; 308: 168-175
Banerji S., Aurass P., Flieger A.: The manifold phospholipases A of Legionella pneumophila – identification, export, regulation, and their link to bacterial virulence. Int. J. Med. Microbiol., 2008; 298: 169-181
Price C.T., Richards A.M., Von Dwingelo J.E., Samara H.A, Abu Kwaik Y.: Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ. Microbiol., 2014; 16: 350-358
Portlock T.J., Tyson J.Y., Dantu S.C., Rehman S., White R.C., McIntire I.E., Sewell L., Richardson K., Shaw R., Pandini A., Cianciotto N.P., Garnett J.A.: Structure, dynamics and cellular insight into novel substrates of the Legionella pneumophila type II secretion system. Front. Mol. Biosci., 2020; 7: 112
de Felipe K.S., Glover R.T., Charpentier X., Anderson O.R., Reyes R., Pericone C.D, Shuman H.A.: Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog., 2008; 4: e1000117
de Felipe K.S., Pampou S., Jovanovic O.S., Pericone C.D., Ye S.F., Kalachikov S., Shuman H.A.: Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol., 2005; 187: 7716-7726
Schroeder G.N., Petty N.K., Mousnier A., Harding C.R., Vogrin A.J., Wee B., Fry N.K., Harrison T.G., Newton H.J., Thomson N.R. i wsp.: Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J. Bacteriol., 2010; 192: 6001-6016
Duncan C., Prashar A., So J., Tang P., Low D.E., Terebiznik M., Guyard C.: Lcl of Legionella pneumophila is an immunogenic GAG binding adhesion that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect. Immun., 2011; 79: 2168-2181
Lucas C.E., Brown E., Fields B.S.: Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology, 2006; 152: 3569-3573
Stewart C.R., Rossier O., Cianciotto N.P.: Surface translocation by Legionella pneumophila: A form of sliding motility that is dependent upon type II protein secretion. J. Bacteriol., 2009; 191: 1537-1546
Söderberg M.A., Rossier O., Cianciotto N.P.: The Type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol., 2004; 186: 3712-3720
Söderberg M.A., Dao J., Starkenburg S. R., Cianciotto N. P.: Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl. Environ. Microbiol., 2008; 74: 5583-5588
Polesky A.H., Ross J.T., Falkow S., Tompkins L.S.: Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect. Immun., 2001; 69: 977-987
White R.C., Cianciotto N.P.: Type II secretion is necessary for optimal association of the Legionella-containing vacuole with macrophage Rab1B but enhances intracellular replication mainly by Rab1B-independent mechanisms. Infect. Immun., 2016; 84: 33133327
Mallama C.A., McCoy-Simandle K., Cianciotto N.P.: The type II secretion system of Legionella pneumophila dampens the MyD88 and Toll-like receptor 2 signaling pathway in infected human macrophages. Infect. Immun., 2017; 85: e00897-16
Grabiec A., Meng G., Fichte S., Bessler W., Wagner H., Kirschning C.J.: Human but not murine Toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides. J. Biol. Chem., 2004; 279: 48004-48012