Have a personal or library account? Click to login

Budowa i znaczenie II systemu sekrecji białek w ekologii i patogenezie Legionella pneumophila

Open Access
|Oct 2021

References

  1. Hayes C.S., Aoki S.K., Low D.A.: Bacterial contact-dependent delivery systems. Annu. Rev. Genet., 2010; 44: 71-90
  2. So E.C., Mattheis C., Tate E.W., Frankel G., Schroeder G.N.: Creating a customized intracellular niche: Subversion of host cell signaling by Legionella type IV secretion system effectors. Can. J. Microbiol., 2015; 61: 617-635
  3. Brzostek K., Karwicka E.: Mechanizmy sekrecji bakterii Gramujemnych – system sekrecji II typu, sekrecja w biogenezie pilusów, autotransport. Post. Mikrobiol., 2006; 45: 135-151
  4. Cianciotto N.P.: Type II secretion and Legionella virulence. Curr. Top. Microbiol. Immunol., 2013; 376: 81-102
  5. Cianciotto N.P.: Type II secretion: A protein secretion system for all seasons. Trends. Microbiol., 2005; 13: 581-588
  6. White R.C., Cianciotto N.P.: Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: The Legionella type II secretion paradigm. Microb. Genom., 2019; 5: e000273
  7. Cianciotto N.P., White R.C.: Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect. Immun., 2017; 85: e00014-17
  8. Korotkov K.V., Sandkvist M.: Architecture, function, and substrates of the type II secretion system. EcoSal. Plus., 2019; 8: 10.1128/ ecosalplus.ESP-0034-2018
  9. Abdel-Nour M., Duncan C., Low D.E., Guyard C.: Biofilms: The stronghold of Legionella pneumophila. Int. J. Mol. Sci., 2013; 14: 21660-21675
  10. Boamah D.K., Zhou G., Ensminger A.W., O’Connor T.J.: From many hosts, one accidental pathogen: The diverse protozoan hosts of Legionella. Front. Cell. Infect. Microbiol., 2017; 7: 477
  11. Liu X., Boyer M.A., Holmgren A.M., Shin S.: Legionella-infected macrophages engage the alveolar epithelium to metabolically reprogram myeloid cells and promote antibacterial inflammation. Cell Host Microbe, 2020; 28: 683-698.e6
  12. Chaudhry R., Sreenath K., Agrawal S.K., Valavane A.: Legionella and Legionnaires’ disease: Time to explore in India. Indian. J. Med. Microbiol., 2018; 36: 324-333
  13. Ditommaso S., Giacomuzzi M., Arauco Rivera S.R., Raso R., Ferrero P., Zotti C.M.: Virulence of Legionella pneumophila strains isolated from hospital water system and healthcare-associated Legionnaires’ disease in Northern Italy between 2004 and 2009. BMC Infect. Dis., 2014; 14: 483
  14. Gomez-Valero L., Rusniok C., Carson D., Mondino S., Pérez-Cobas A.E., Rolando M., Pasricha S., Reuter S., Demirtas J., Crumbach J. i wsp.: More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells. Proc. Natl. Acad. Sci. USA, 2019; 116: 2265-2273
  15. Correia A.M., Ferreira J.S., Borges V., Nunes A., Gomes B., Capucho R., Gonçalves J., Antunes D.M., Almeida S., Mendes A. i wsp.: Probable person-to-person transmission of Legionnaires’ disease. N. Engl. J. Med., 2016; 374: 497-498
  16. De Giglio O., Fasano F., Diella G., Lopuzzo M., Napoli C., Apollonio F., Brigida S., Calia C., Campanale C., Marzella A. i wsp.: Legionella and legionellosis in touristic-recreational facilities: Influence of climate factors and geostatistical analysis in Southern Italy (2001–2017). Environ. Res., 2019; 178: 108721
  17. Surveillance Atlas of Infectious Diseases. http://atlas.ecdc.europa.eu/public/index.aspx (01.11.2020)
  18. Lin S.Y., Chen Y.H., Lu P.L., Tsai Y.M., Chen T.C.: An underestimated co-infection: Swine influenza and pneumonia due to Legionella pneumophila. Am. J. Med. Sci., 2016; 352: 314-316
  19. Faulkner G., Garduño R.A.: Ultrastructural analysis of differentiation in Legionella pneumophila. J. Bacteriol., 2002; 184: 70257041
  20. Fuche F., Vianney A., Andrea C., Doublet P., Gilbert C.: Functional type 1 secretion system involved in Legionella pneumophila virulence. J. Bacteriol., 2015; 197: 563-571
  21. Qin T., Zhou H., Ren H., Liu W.: Distribution of secretion systems in the genus Legionella and its correlation with pathogenicity. Front. Microbiol., 2017; 8: 388
  22. Nakano N., Kubori T., Kinoshita M., Imada K., Nagai H.: Crystal structure of Legionella DotD: Insights into the relationship between type IVB and type II/III secretion systems. PLoS Pathog., 2010; 6: e1001129
  23. White R.C., Truchan H.K., Zheng H., Tyson J.Y., Cianciotto N.P.: Type II secretion promotes bacterial growth within the Legionella-containing vacuole in infected amoebae. Infect. Immun., 2019; 87: e00374-19
  24. De Buck E., Maes L., Meyen E., Van Mellaert L., Geukens N., Anné J., Lammertyn E.: Legionella pneumophila Philadelphia-1 tatB and tatC affect intracellular replication and biofilm formation. Biochem. Biophys. Res. Commun. 2005; 331: 1413-1420
  25. Personnic N., Striednig B., Hilbi H.: Quorum sensing controls persistence, resuscitation, and virulence of Legionella subpopulations in biofilms. ISME J., 2021; 15: 196-210
  26. Abby S.S., Cury J., Guglielmini J., Néron B., Touchon M., Rocha E.P.: Identification of protein secretion systems in bacterial genomes. Sci. Rep., 2016; 6: 23080
  27. Costa T.R., Felisberto-Rodrigues C., Meir A., Prevost M.S., Redzej A., Trokter M., Waksman G.: Secretion systems in Gramnegative bacteria: Structural and mechanistic insights. Nat. Rev. Microbiol., 2015; 13: 343-359
  28. Lu C., Korotkov K.V., Hol W.G.: Crystal structure of the full-length ATPase GspE from the Vibrio vulnificus type II secretion system in complex with the cytoplasmic domain of GspL. J. Struct. Biol., 2014; 187: 223-235
  29. Ghosal D., Kim K.W., Zheng H., Kaplan M., Truchan H.K., Lopez A.E., McIntire I.E., Vogel J.P., Cianciotto N.P., Jensen G.J.: In vivo structure of the Legionella type II secretion system by electron cryotomography. Nat. Microbiol., 2019; 4: 2101-2108
  30. Thomassin J.L., Santos Moreno J., Guilvout I., Tran Van Nhieu G., Francetic O.: The trans-envelope architecture and function of the type 2 secretion system: New insights raising new questions. Mol. Microbiol., 2017; 105: 211-226
  31. Filloux A., Voulhoux R.: Multiple structures disclose the secretins’ secrets. J. Bacteriol. 2018; 200: e00702-17
  32. Naskar S., Hohl M., Tassinari M., Low H.H.: The structure and mechanism of the bacterial type II secretion system. Mol. Microbiol., 2021; 115: 412-424
  33. Nivaskumar M., Francetic O.: Type II secretion system: A magic beanstalk or a protein escalator. Biochim. Biophys. Acta, 2014; 1843: 1568-1577
  34. Gray M.D., Bagdasarian M., Hol W.G., Sandkvist M.: In vivo cross-linking of EpsG to EpsL suggests a role for EpsL as an ATPase-pseudopilin coupling protein in the Type II secretion system of Vibrio cholerae. Mol. Microbiol., 2011; 79: 786-798
  35. López-Castilla A., Thomassin J.L., Bardiaux B., Zheng W., Nivaskumar M., Yu X., Nilges M., Egelman E.H., Izadi-Pruneyre N., Francetic O.: Structure of the calcium-dependent type 2 secretion pseudopilus. Nat. Microbiol., 2017; 2: 1686-1695
  36. Nunn D.: Bacterial type II protein export and pilus biogenesis: More than just homologies? Trends Cell Biol., 1999; 9: 402-408
  37. Guilvout I., Chami M., Engel A., Pugsley A.P., Bayan N.: Bacterial outer membrane secretin PulD assembles and inserts into the inner membrane in the absence of its pilotin. EMBO J., 2006; 25: 5241-5249
  38. Viarre V., Cascales E., Ball G., Michel G.P., Filloux A., Voulhoux R.: HxcQ liposecretin is self-piloted to the outer membrane by its N-terminal lipid anchor. J. Biol. Chem., 2009; 284: 33815-33823
  39. Carter T., Buensuceso R.N., Tammam S., Lamers R.P., Harvey H., Howell P.L., Burrows L.L.: The type IVa pilus machinery is recruited to sites of future cell division. mBio, 2017; 8: e02103-16
  40. Yahashiri A., Jorgenson M.A., Weiss D.S.: The SPOR domain, a widely conserved peptidoglycan binding domain that targets proteins to the site of cell division. J. Bacteriol., 2017; 199: e00118-17
  41. Truchan H.K., Christman H.D., White R.C., Rutledge N.S., Cianciotto N.P.: Type II secretion substrates of Legionella pneumophila translocate out of the pathogen-occupied vacuole via a semipermeable membrane. mBio, 2017; 8: e00870-17
  42. Freudl R.: Signal peptides for recombinant protein secretion in bacterial expression systems. Microb. Cell Fact., 2018; 17: 52
  43. Cianciotto N.P.: Many substrates and functions of type II secretion: Lessons learned from Legionella pneumophila. Future Microbiol., 2009; 4: 797-805
  44. Rusch S.L., Kendall D.A.: Interactions that drive Sec-dependent bacterial protein transport. Biochemistry, 2007; 46: 9665-9673
  45. Denks K., Vogt A., Sacchelaru I., Petriman N.A., Kudva R., Koch H.G.: The Sec translocon mediated protein transport in prokaryotes and eukaryotes. Mol. Membr. Biol., 2014; 31: 58-84
  46. Elvekrog M.M., Walter P.: Dynamics of co-translational protein targeting. Curr. Opin. Chem. Biol., 2015; 29: 79-86
  47. Bechtluft P., Nouwen N., Tans S.J., Driessen A.J.: SecB – a chaperone dedicated to protein translocation. Mol. Biosyst., 2010; 6: 620-627
  48. Lycklama A., Nijeholt J.A., Driessen A.J.: The bacterial Sec-translocase: Structure and mechanism. Philos. Trans. R. Soc. B. Lond. B Biol. Sci., 2012; 367: 1016-1028
  49. Tsukazaki T., Mori H., Echizen Y., Ishitani R., Fukai S., Tanaka T., Perederina A., Vassylyev D.G., Kohno T., Maturana A.D., Ito K., Nureki O.: Structure and function of a membrane component SecDF that enhances protein export. Nature, 2011; 474: 235-238
  50. Dalbey R.E., Wang P., van Dijl J.M.: Membrane proteases in the bacterial protein secretion and quality control pathway. Microbiol. Mol. Biol. Rev., 2012; 76: 311-330
  51. Palmer T., Berks B.C.: The twin-arginine translocation (Tat) protein export pathway. Nat. Rev. Microbiol., 2012; 10: 483-496
  52. Oertel D., Schmitz S., Freudl R.: A TatABC-type Tat translocase is required for unimpaired aerobic growth of Corynebacterium glutamicum ATCC13032. PLoS One, 2015; 10: e0123413
  53. Sargent F., Stanley N.R., Berks B.C., Palmer T.: Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J. Biol. Chem., 1999; 274: 36073-36082
  54. Simone D., Bay D.C., Leach T., Turner R.J.: Diversity and evolution of bacterial twin arginine translocase protein, TatC, reveals a protein secretion system that is evolving to fit its environmental niche. PLoS One, 2013; 8: e78742
  55. Blaudeck N., Kreutzenbeck P., Müller M., Sprenger G.A., Freudl R.: Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem., 2005; 280: 3426-3432
  56. Jongbloed J.D., van der Ploeg R., van Dijl J.M.: Bifunctional TatA subunits in minimal Tat protein translocases. Trends Microbiol., 2006; 14: 2-4
  57. Alami M., Lüke I., Deitermann S., Eisner G., Koch H.G., Brunner J., Müller M.: Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell, 2003; 12: 937-946
  58. Lausberg F., Fleckenstein S., Kreutzenbeck P., Fröbel J., Rose P., Müller M., Freudl R.: Genetic evidence for a tight cooperation of TatB and TatC during productive recognition of twin-arginine (Tat) signal peptides in Escherichia coli. PLoS One, 2012; 7: e39867
  59. Brüser T., Sanders C.: An alternative model of the twin arginine translocation system. Microbiol. Res., 2003; 158: 7-17
  60. Gohlke U., Pullan L., McDevitt C.A., Porcelli I., de Leeuw E., Palmer T., Saibil H.R., Berks B.C.: The TatA component of the twin-arginine protein transport system forms channel complexes of variable diameter. Proc. Natl. Acad. Sci. USA, 2005; 102: 10482-10486
  61. Mori H., Cline K.: A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase. J. Cell Biol., 2002; 157: 205-210
  62. Lüke I., Hanford J.I., Palmer T., Sargent F.: Proteolytic processing of Escherichia coli twin-arginine signal peptides by LepB. Arch. Microbiol., 2009; 191: 919-925
  63. Hospenthal M.K., Costa T.R., Waksman G.A.: A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol., 2017; 15: 365-379
  64. Peabody C.R., Chung Y.J., Yen M.R., Vidal-Ingigliardi D., Pugsley A.P., Saier M.H.: Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella. Microbiology, 2003; 149: 3051-3072
  65. Francetić O., Pugsley A.P.: Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J. Bacteriol., 2005; 187: 7045-7055
  66. Johnson T.L., Abendroth J., Hol W.G., Sandkvist M.: Type II secretion: From structure to function. FEMS Microbiol. Lett., 2006; 255: 175-186
  67. Liles M.R., Viswanathan V.K., Cianciotto N.P.: Identification and temperature regulation of Legionella pneumophila genes involved in type IV pilus biogenesis and type II protein secretion. Infect. Immun., 1998; 66: 1776-1782
  68. Liles M.R., Edelstein P.H., Cianciotto N.P.: The prepilin peptidase is required for protein secretion by and the virulence of the intracellular pathogen Legionella pneumophila. Mol. Microbiol., 1999; 31: 959-970
  69. Hales L.M., Shuman H.A.: Legionella pneumophila contains a type II general secretion pathway required for growth in amoebae as well as for secretion of the Msp protease. Infect. Immun. 1999; 67: 3662-3666
  70. Rossier O., Cianciotto N.P.: Type II protein secretion is a subset of the PilD-dependent processes that facilitate intracellular infection by Legionella pneumophila. Infect. Immun., 2001; 69: 20922098
  71. Rossier O., Starkenburg S.R., Cianciotto N.P.: Legionella pneumophila type II protein secretion promotes virulence in the A/J mouse model of Legionnaires’ disease pneumonia. Infect. Immun., 2004; 72: 310-321
  72. Cazalet C., Rusniok C., Bruggemann H., Zidane N., Magnier A., Ma L., Tichit M., Jarraud S., Bouchier C., Vandenesch F. i wsp.: Evidence in the Legionella pneumophila genome for exploitation of host cell functions and high genome plasticity. Nat. Genet., 2004; 36: 1165-1173
  73. Chien M., Morozova I., Shi S., Sheng H., Chen J., Gomez S.M., Asamani G., Hill K., Nuara J., Feder M. i wsp.: The genomic sequence of the accidental pathogen Legionella pneumophila. Science, 2004; 305: 1966-1968
  74. Glöckner G., Albert-Weissenberger C., Weinmann E., Jacobi S., Schunder E., Steinert M., Hacker J., Heuner K.: Identification and characterization of a new conjugation/type IVA secretion system (trb/tra) of Legionella pneumophila Corby localized on two mobile genomic islands. Int. J. Med. Microbiol., 2008; 298: 411-428
  75. DebRoy S., Dao J., Söderberg M., Rossier O., Cianciotto N.P.: Legionella pneumophila type II secretome reveals unique exoproteins and a chitinase that promotes bacterial persistence in the lung. Proc. Natl. Acad. Sci. USA, 2006; 103: 19146-19151
  76. White R.C., Gunderson F.F., Tyson J.Y., Richardson K.H., Portlock T.J., Garnett J.A., Cianciotto N.P.: Type II secretiondependent aminopeptidase LapA and acyltransferase PlaC are redundant for nutrient acquisition during Legionella pneumophila intracellular infection of amoebas. mBio, 2018; 9: e00528-18
  77. Pearce M.M., Cianciotto N.P.: Legionella pneumophila secretes an endoglucanase that belongs to the family-5 of glycosyl hydrolases and is dependent upon type II secretion. FEMS Microbiol. Lett., 2009; 300: 256-264
  78. Herrmann V., Eidner A., Rydzewski K., Blädel I., Jules M., Buchrieser C., Eisenreich W., Heuneret K.: GamA is a eukaryoticlike glucoamylase responsible for glycogen- and starch-degrading activity of Legionella pneumophila. Int. J. Med. Microbiol., 2011; 301: 133-139
  79. Rossier O., Dao J., Cianciotto N.P.: The type II secretion system of Legionella pneumophila elaborates two aminopeptidases as well as a metalloprotease that contributes to differential infection among protozoan hosts. Appl. Environ. Microbiol., 2008; 74: 753-761
  80. Abdel-Nour M., Duncan C., Prashar A., Rao C., Ginevra C., Jarraud S., Low D.E., Ensminger A.W., Terebiznik M.R., Guyard C.: The Legionella pneumophila collagen-like protein mediates sedimentation, autoaggregation, and pathogen-phagocyte interactions. Appl. Environ. Microbiol., 2014; 80: 1441-1454
  81. Aragon V., Rossier O., Cianciotto N.P.: Legionella pneumophila genes that encode lipase and phospholipase C activities. Microbiology, 2002; 148: 2223-2231
  82. Söderberg M.A., Cianciotto N.P.: A Legionella pneumophila pep-tidyl-prolyl cis-trans isomerase present in culture supernatants is necessary for optimal growth at low temperatures. Appl. Environ. Microbiol., 2008; 74: 1634-1638
  83. Aragon V., Kurtz S., Cianciotto N.P.: Legionella pneumophila major acid phosphatase and its role in intracellular infection. Infect. Immun., 2001; 69: 177-185
  84. Tyson J.Y., Vargas P., Cianciotto N.P.: The novel Legionella pneumophila type II secretion substrate NttC contriubtes to infection of amoebae Hartmannella vermiformis and Willaertia magna. Microbiology, 2014; 160: 2732-2744
  85. Flieger A., Gong S., Faigle M., Stevanovic S., Cianciotto N.P., Neumeister B.: Novel lysophospholipase A secreted by Legionella pneumophila. J. Bacteriol., 2001; 183: 2121-2124
  86. Flieger A., Neumeister B., Cianciotto N.P.: Characterization of the gene encoding the major secreted lysophospholipase A of Legionella pneumophila and its role in detoxification of lysophosphatidylcholine. Infect. Immun., 2002; 70: 6094-6106
  87. Banerji S., Bewersdorff M., Hermes B., Cianciotto N.P., Flieger A.: Characterization of the major secreted zinc metalloproteasedependent glycerophospholipid:cholesterol acyltransferase, PlaC, of Legionella pneumophila. Infect. Immun., 2005; 73: 2899-2909
  88. McCoy-Simandle K., Stewart C.R., Dao J., DebRoy S., Rossier O., Bryce P.J., Cianciotto N.P.: Legionella pneumophila type II secretion dampens the cytokine response of infected macrophages and epithelia. Infect. Immun., 2011; 79: 1984-1997
  89. Rossier O., Dao J., Cianciotto N.P.: A type II secreted RNase of Legionella pneumophila facilitates optimal intracellular infection of Hartmannella vermiformis. Microbiology, 2009; 155: 882-890
  90. Hiller M., Lang C., Michel W., Flieger A.: Secreted phospholipases of the lung pathogen Legionella pneumophila. Int. J. Med. Microbiol., 2018; 308: 168-175
  91. Flieger A., Frischknecht F., Häcker G., Hornef M.W., Pradel G.: Pathways of host cell exit by intracellular pathogens. Microb. Cell, 2018; 5: 525-544
  92. Hoffmann C., Harrison C.F., Hilbi H.: The natural alternative: Protozoa as cellular models for Legionella infection. Cell. Microbiol., 2014; 16: 15-26
  93. Lang C., Rastew E., Hermes B., Siegbrecht E., Ahrends R., Banerji S., Flieger A.: Zinc metalloproteinase ProA directly activates Legionella pneumophila PlaC glycerophospholipid:cholesterol acyltransferase. J. Biol. Chem., 2012; 287: 23464-23478
  94. Banerji S., Aurass P., Flieger A.: The manifold phospholipases A of Legionella pneumophila – identification, export, regulation, and their link to bacterial virulence. Int. J. Med. Microbiol., 2008; 298: 169-181
  95. Best A., Jones S., Abu Kwaik Y.: Mammalian solute carrier (SLC)-like transporters of Legionella pneumophila. Sci. Rep., 2018; 8: 8352
  96. Price C.T., Richards A.M., Von Dwingelo J.E., Samara H.A, Abu Kwaik Y.: Amoeba host-Legionella synchronization of amino acid auxotrophy and its role in bacterial adaptation and pathogenic evolution. Environ. Microbiol., 2014; 16: 350-358
  97. Rehman S., Grigoryeva L.S., Richardson K.H., Corsini P., White R.C., Shaw R., Portlock T.J., Dorgan B., Zanjani Z.S., Fornili A., Cianciotto N.P., Garnett J.A.: Structure and functional analysis of the Legionella pneumophila chitinase ChiA reveals a novel mechanism of metal-dependent mucin degradation. PLoS Pathog., 2020; 16: e1008342
  98. Portlock T.J., Tyson J.Y., Dantu S.C., Rehman S., White R.C., McIntire I.E., Sewell L., Richardson K., Shaw R., Pandini A., Cianciotto N.P., Garnett J.A.: Structure, dynamics and cellular insight into novel substrates of the Legionella pneumophila type II secretion system. Front. Mol. Biosci., 2020; 7: 112
  99. de Felipe K.S., Glover R.T., Charpentier X., Anderson O.R., Reyes R., Pericone C.D, Shuman H.A.: Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog., 2008; 4: e1000117
  100. de Felipe K.S., Pampou S., Jovanovic O.S., Pericone C.D., Ye S.F., Kalachikov S., Shuman H.A.: Evidence for acquisition of Legionella type IV secretion substrates via interdomain horizontal gene transfer. J. Bacteriol., 2005; 187: 7716-7726
  101. Gomez-Valero L., Rusniok C., Cazalet C., Buchrieser C.: Comparative and functional genomics of Legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front. Microbiol., 2011; 2: 208
  102. Lurie-Weinberger M.N., Gomez-Valero L., Merault N., Glöckner G., Buchrieser C., Gophna U.: The origins of eukaryotic-like proteins in Legionella pneumophila. Int. J. Med. Microbiol., 2010; 300: 470-481
  103. Schroeder G.N., Petty N.K., Mousnier A., Harding C.R., Vogrin A.J., Wee B., Fry N.K., Harrison T.G., Newton H.J., Thomson N.R. i wsp.: Legionella pneumophila strain 130b possesses a unique combination of type IV secretion systems and novel Dot/Icm secretion system effector proteins. J. Bacteriol., 2010; 192: 6001-6016
  104. Hughes E.D., Swanson M.S.: How Legionella defend their turf. eLife, 2019; 8: e48695
  105. Duncan C., Prashar A., So J., Tang P., Low D.E., Terebiznik M., Guyard C.: Lcl of Legionella pneumophila is an immunogenic GAG binding adhesion that promotes interactions with lung epithelial cells and plays a crucial role in biofilm formation. Infect. Immun., 2011; 79: 2168-2181
  106. Lucas C.E., Brown E., Fields B.S.: Type IV pili and type II secretion play a limited role in Legionella pneumophila biofilm colonization and retention. Microbiology, 2006; 152: 3569-3573
  107. Stewart C.R., Rossier O., Cianciotto N.P.: Surface translocation by Legionella pneumophila: A form of sliding motility that is dependent upon type II protein secretion. J. Bacteriol., 2009; 191: 1537-1546
  108. Söderberg M.A., Rossier O., Cianciotto N.P.: The Type II protein secretion system of Legionella pneumophila promotes growth at low temperatures. J Bacteriol., 2004; 186: 3712-3720
  109. Söderberg M.A., Dao J., Starkenburg S. R., Cianciotto N. P.: Importance of type II secretion for survival of Legionella pneumophila in tap water and in amoebae at low temperatures. Appl. Environ. Microbiol., 2008; 74: 5583-5588
  110. Tyson J.Y., Pearce M.M., Vargas P., Bagchi S., Mulhern B.J., Cianciotto N.P.: Multiple Legionella pneumophila type II secretion substrates, including a novel protein, contribute to differential infection of amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis. Infect. Immun., 2013; 81: 1399-1410
  111. Polesky A.H., Ross J.T., Falkow S., Tompkins L.S.: Identification of Legionella pneumophila genes important for infection of amoebas by signature-tagged mutagenesis. Infect. Immun., 2001; 69: 977-987
  112. White R.C., Cianciotto N.P.: Type II secretion is necessary for optimal association of the Legionella-containing vacuole with macrophage Rab1B but enhances intracellular replication mainly by Rab1B-independent mechanisms. Infect. Immun., 2016; 84: 33133327
  113. Mallama C.A., McCoy-Simandle K., Cianciotto N.P.: The type II secretion system of Legionella pneumophila dampens the MyD88 and Toll-like receptor 2 signaling pathway in infected human macrophages. Infect. Immun., 2017; 85: e00897-16
  114. Grabiec A., Meng G., Fichte S., Bessler W., Wagner H., Kirschning C.J.: Human but not murine Toll-like receptor 2 discriminates between tri-palmitoylated and tri-lauroylated peptides. J. Biol. Chem., 2004; 279: 48004-48012
  115. Lang C., Hiller M., Flieger A.: Disulfide loop cleavage of Legionella pneumophila PlaA boosts lysophospholipase A activity. Sci. Rep., 2017; 7: 16313
  116. Jan A.T.: Outer membrane vesicles (OMVs) of gram-negative bacteria: A perspective update. Front. Microbiol., 2017; 8: 1053
Language: English
Page range: 584 - 598
Submitted on: Nov 30, 2020
Accepted on: Jul 15, 2021
Published on: Oct 21, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Agata Małek, Bożena Kowalczyk, Marta Palusińska-Szysz, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.