Have a personal or library account? Click to login

Adamalizyny jako potencjalne biomarkery w wybranych nowotworach złośliwych przewodu pokarmowego

Open Access
|Oct 2021

References

  1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018; 68: 394-424
  2. Duffy M.J., McKiernan E., O’Donovan N., McGowan P.M.: Role of ADAMs in cancer formation and progression. Clin. Cancer Res., 2009; 15: 1140-1144
  3. Walkiewicz K., Kozieł P., Bednarczyk M., Błażelonis A., Mazurek U., Muc-Wierzgoń M.: Expression of migration-related genes in human colorectal cancer and activity of a disintegrin and metalloproteinase 17. Biomed Res. Int., 2016; 2016: 8208904
  4. Walkiewicz K., Nowakowska-Zajdel E., Kozieł P., Muc-Wierzgoń M.: The role of some ADAM-proteins and activation of the insulin growth factor-related pathway in colorectal cancer. Cent. Eur. J. Immunol., 2018; 43: 109-113
  5. Fushida S., Oyama K., Kinoshita J., Yagi Y., Okamoto K., Tajima H., Ninomiya I., Fujimura T., Ohta T.: VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: Prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. Onco. Targets Ther., 2013; 6: 14451451
  6. Gao M.Q., Kim B.G., Kang S., Choi Y.P., Yoon J.H., Cho N.H.: Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-α cleavage by ADAM17. Cancer Lett., 2013; 336: 240-246
  7. Mochizuki S., Okada Y.: ADAM28 as a target for human cancers. Curr. Pharm. Des., 2009; 15: 2349-2358
  8. Stawikowska R., Cudic M., Giulianotti M., Houghten R.A., Fields G.B., Minond D.: Activity of ADAM17 (a disintegrin and metalloprotease 17) is regulated by its noncatalytic domains and secondary structure of its substrates. J. Biol. Chem., 2013; 288: 22871-22879
  9. Jones J.C., Rustagi S., Dempsey P.J.: ADAM proteases and gastrointestinal function. Annu. Rev. Physiol., 2016; 78: 243-276
  10. Zhou Z., Ran Y.L., Hu H., Pan J., Li Z.F., Chen L.Z., Sun L.C., Peng L., Zhao X.L., Yu L. i wsp.: TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin. Exp. Metastasis, 2008; 25: 537-548
  11. Liu H.B., Zhu Y., Yang Q.C., Shen Y., Zhang X.J., Chen H.: Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma. Genet. Mol. Res., 2015; 14: 43914398
  12. Lo P.H., Lung H.L., Cheung A.K., Apte S.S., Chan K.W., Kwong F.M., Ko J.M., Cheng Y., Law S., Srivastava G. i wsp.: Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. Cancer Res., 2010; 70: 5567-5576
  13. Kauttu T., Mustonen H., Vainionpää S., Krogerus L., Ilonen I., Räsänen J., Salo J., Puolakkainen P.: Disintegrin and metalloproteinases (ADAMs) expression in gastroesophageal reflux disease and in esophageal adenocarcinoma. Clin. Transl. Oncol., 2017; 19: 58-66
  14. Yoshimura T., Tomita T., Dixon M.F., Axon A.T., Robinson P.A., Crabtree J.E.: ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori – infected, normal, and neoplastic gastric mucosa. J. Infect. Dis., 2002; 185: 332-340
  15. Wang Y.Y., Ye Z.Y., Li L., Zhao Z.S., Shao Q.S., Tao H.Q.: ADAM 10 is associated with gastric cancer progression and prognosis of patients. J. Surg. Oncol., 2011; 103: 116-123
  16. Shou Z.X., Jin X., Zhao Z.S.: Upregulated expression of ADAM17 is a prognostic marker for patients with gastric cancer. Ann. Surg., 2012; 256: 1014-1022
  17. Zhang T.C., Zhu W.G., Huang M.D., Fan R.H., Chen X.F.: Prognostic value of ADAM17 in human gastric cancer. Med. Oncol., 2012; 29: 2684-2690
  18. Aydin D., Bilici A., Yavuzer D., Kefeli U., Tan A., Ercelep O., Mert A., Yuksel S., Ozcelik M., Isik D. i wsp.: Prognostic significance of ADAM17 expression in patients with gastric cancer who underwent curative gastrectomy. Clin. Transl. Oncol., 2015; 17: 604-611
  19. Li W., Wang D., Sun X., Zhang Y., Wang L., Suo J.: ADAM17 promotes lymph node metastasis in gastric cancer via activation of the Notch and Wnt signaling pathways. Int. J. Mol. Med., 2019; 43: 914-926
  20. Ebi M., Kataoka H., Shimura T., Kubota E., Hirata Y., Mizushima T., Mizoshita T., Tanaka M., Mabuchi M., Tsukamoto H. i wsp.: TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells. Biochem. Biophys. Res. Commun., 2010; 402: 449-454
  21. Nakagawa M., Nabeshima K., Asano S., Hamasaki M., Uesugi N., Tani H., Yamashita Y., Iwasaki H.: Up-regulated expression of ADAM17 in gastrointestinal stromal tumors: Coexpression with EGFR and EGFR ligands. Cancer Sci., 2009; 100: 654-662
  22. Carl-McGrath S., Lendeckel U., Ebert M., Roessner A., Röcken C.: The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. J. Oncol., 2005; 26: 17-24
  23. Kim K.E., Song H., Hahm C., Yoon S.Y., Park S., Lee H.R., Hur D.Y., Kim T., Kim C.H., Bang S.I. i wsp.: Expression of ADAM33 is a novel regulatory mechanism in IL-18-secreted process in gastric cancer. J. Immunol., 2009; 182: 3548-3555
  24. Kim J.M., Jeung H.C., Rha S.Y., Yu E.J., Kim T.S., Shin Y.K., Zhang X., Park K.H., Park S.W., Chung H.C. i wsp.: The effect of disintegrin-metalloproteinase ADAM9 in gastric cancer progression. Mol. Cancer Ther., 2014; 13: 3074-3085
  25. Wang J., Zhou Y., Fei X., Chen X., Yan J., Liu B., Zhu Z.: ADAM9 functions as a promoter of gastric cancer growth which is negatively and post-transcriptionally regulated by miR-126. Oncol. Rep., 2017; 37: 2033-2040
  26. Huang J., Bai Y., Huo L., Xiao J., Fan X., Yang Z., Chen H., Yang Z.: Upregulation of a disintegrin and metalloprotease 8 is associated with progression and prognosis of patients with gastric cancer. Transl. Res., 2015; 166: 602-613
  27. Chung H.W., Kim J.J., Choi J.I., Lee H.R., Lim J.B.: A disintegrin and metalloproteinase 8 as a potential blood biomarker for early diagnosis of gastric cancer. Yonsei Med. J., 2019; 60: 713-719
  28. Chen H., Wang S.: Clinical significance of ADAM29 promoting the invasion and growth of gastric cancer cells in vitro. Oncol. Lett., 2018; 16: 1483-1490
  29. Ilic M, Ilic I.: Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016; 22: 9694-9705
  30. Stewart B.W., Wild C.P.: World cancer report 2014. International Agency for Research on Cancer, Lyon 2014
  31. Gaida M.M., Haag N., Günther F., Tschaharganeh D.F., Schirmacher P., Friess H., Giese N.A., Schmidt J., Wente M.N.: Expression of A disintegrin and metalloprotease 10 in pancreatic carcinoma. Int. J. Mol. Med., 2010; 26: 281-288
  32. Ringel J., Jesnowski R., Moniaux N., Lüttges J., Ringel J., Choudhury A., Batra S.K., Klöppel G., Löhr M.: Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-α converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res., 2006; 66: 9045-9053
  33. Valkovskaya N., Kayed H., Felix K., Hartmann D., Giese N.A., Osinsky S.P., Friess H., Kleeff J.: ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J. Cell. Mol. Med., 2007; 11: 1162-1174
  34. Valkovskaya N.V: Hypoxia-dependent expression of ADAM8 in human pancreatic cancer cell lines. Exp. Oncol., 2008; 30: 129132
  35. Puolakkainen P., Koski A., Vainionpää S., Shen Z., Repo H., Kemppainen E., Mustonen H., Seppänen H.: Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med. Oncol., 2014; 31: 884
  36. Gao Y., Yu X., Zhang F., Dai J.: Propofol inhibits pancreatic cancer progress under hypoxia via ADAM8. J. Hepatobiliary Pancreat. Sci., 2019; 26: 219-226
  37. Grützmann R., Lüttges J., Sipos B., Ammerpohl O., Dobrowolski F., Alldinger I., Kersting S., Ockert D., Koch R., Kalthoff H. i wsp.: ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br. J. Cancer, 2004; 90: 1053-1058
  38. Oria V.O., Lopatta P., Schmitz T., Preca B.T., Nyström A., Conrad C., Bartsch J.W., Kulemann B., Hoeppner J., Maurer J. i wsp.: ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol. Oncol., 2019; 13: 456-479
  39. Duan X., Mao X., Sun W.: ADAM15 is involved in MICB shedding and mediates the effects of gemcitabine on MICB shedding in PANC-1 pancreatic cancer cells. Mol. Med. Rep., 2013; 7: 991-997
  40. Woods N., Trevino J., Coppola D., Chellappan S., Yang S., Padmanabhan J.: Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget, 2015; 6: 35931-35948
  41. Ye J., Yuen S.M., Murphy G., Xie R., Kwok H.F.: Anti-tumor effects of a ‘human & mouse cross-reactive’ anti-ADAM17 antibody in a pancreatic cancer model in vivo. Eur. J. Pharm. Sci., 2017; 110: 62-69
  42. Schlomann U., Koller G., Conrad C., Ferdous T., Golfi P., Garcia A.M., Höfling S., Parsons M., Costa P., Soper R. i wsp.: ADAM8 as a drug target in pancreatic cancer. Nat. Commun., 2015; 6: 6175
  43. Moss M.L., Minond D.: Recent advances in ADAM17 research: A promising target for cancer and inflammation. Mediators Inflamm., 2017; 2017: 9673537
  44. Terzić J., Grivennikov S., Karin E., Karin M.: Inflammation and colon cancer. Gastroenterology, 2010; 138: 2101-2114
  45. Blanchot-Jossic F., Jarry A., Masson D., Bach-Ngohou K., Paineau J., Denis M.G., Laboisse C.L., Mosnier J.F.: Up-regulated expression of ADAM17 in human colon carcinoma: Co-expression with EGFR in neoplastic and endothelial cells. J. Pathol., 2005; 207: 156-163
  46. Das S., Czarnek M., Bzowska M., Mężyk-Kopeć R., Stalińska K., Wyroba B., Sroka J., Jucha J., Deneka D., Stokłosa P. i wsp.: ADAM17 silencing in mouse colon carcinoma cells: The effect on tumoricidal cytokines and angiogenesis. PLoS One, 2012; 7: e50791
  47. Lin H.M., Chatterjee A., Lin Y.H., Anjomshoaa A., Fukuzawa R., McCall J.L., Reeve A.E.: Genome wide expression profiling identifies genes associated with colorectal liver metastasis. Oncol. Rep., 2007; 17: 1541-1549
  48. Van Schaeybroeck S., Kyula J.N., Fenton A., Fenning C.S., Sasazuki T., Shirasawa S., Longley D.B., Johnston P.G.: Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res., 2011; 71: 1071-1080
  49. Rios-Doria J., Sabol D., Chesebrough J., Stewart D., Xu L., Tammali R., Cheng L., Du Q., Schifferli K., Rothstein R. i wsp.: A monoclonal antibody to ADAM17 inhibits tumor growth by inhibiting EGFR and non-EGFR-mediated pathways. Mol. Cancer Ther., 2015; 14: 1637-1649
  50. Dempsey P.J.: Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochim. Biophys. Acta, 2017; 1864: 22282239
  51. Knösel T., Emde A., Schlüns K., Chen Y., Jürchott K., Krause M., Dietel M., Petersen I.: Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia, 2005; 7: 741-747
  52. Walkiewicz K., Strzelczyk J., Waniczek D., Biernacki K., Muc-Wierzgoń M., Copija A., Nowakowska-Zajdel E.: Adamalysines as biomarkers and a potential target of therapy in colorectal cancer patients: Preliminary results. Dis. Markers, 2019; 2019: 5035234
  53. Nowakowska-Zajdel E., Mazurek U., Wierzgoń J., Kokot T., Fatyga E., Ziółko E., Klakla K., Błazelonis A., Waniczek D., Głogowski Ł. i wsp.: Expression of ADAM28 and IGFBP-3 genes in patients with colorectal cancer – a preliminary report. Int. J. Immunopathol. Pharmacol., 2013; 26: 223-228
  54. Mochizuki S., Ao T., Sugiura T., Yonemura K., Shiraishi T., Kajiwara Y., Okamoto K., Shinto E., Okada Y., Ueno H.: Expression and function of a disintegrin and metalloproteinases in cancerassociated fibroblasts of colorectal cancer. Digestion, 2020; 101: 18-24
  55. Yang Z., Bai Y., Huo L., Chen H., Huang J., Li J., Fan X., Yang Z., Wang L., Wang J.: Expression of A disintegrin and metalloprotease 8 is associated with cell growth and poor survival in colorectal cancer. BMC Cancer, 2014; 14: 568
  56. Hirao T., Nanba D., Tanaka M., Ishiguro H., Kinugasa Y., Doki Y., Yano M., Matsuura N., Monden M., Higashiyama S.: Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp. Cell Res., 2006; 312: 331-339
  57. Mazzocca A., Coppari R., De Franco R., Cho J.Y., Libermann T.A., Pinzani M., Toker A.: A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res., 2005; 65: 4728-4738
  58. Toquet C., Colson A., Jarry A., Bezieau S., Volteau C., Boisseau P., Merlin D., Laboisse C.L., Mosnier J.F.: ADAM15 to α5β1 integrin switch in colon carcinoma cells: A late event in cancer progression associated with tumor dedifferentiation and poor prognosis. Int. J. Cancer, 2012; 130: 278-287
  59. Wang J., Li H., Wang Y., Wang L., Yan X., Zhang D., Ma X., Du Y., Liu X., Yang Y.: MicroRNA-552 enhances metastatic capacity of colorectal cancer cells by targeting a disintegrin and metalloprotease 28. Oncotarget, 2016; 7: 70194-70210
  60. Li L.X., Lam I.H., Liang F.F., Yi S.P., Ye L.F., Wang J.T., Guo W.W., Xu M.: MiR-198 affects the proliferation and apoptosis of colorectal cancer through regulation of ADAM28/JAK-STAT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019; 23: 1487-1493
  61. Zhang Q., Yu L., Qin D., Huang R., Jiang X., Zou C., Tang Q., Chen Y., Wang G., Wang X., Gao X.: Role of microRNA-30c targeting ADAM19 in colorectal cancer. PLoS One, 2015; 10: e0120698
  62. Fu Q., Cheng J., Zhang J., Zhang Y., Chen X., Luo S., Xie J.: MiR-20b reduces 5-FU resistance by suppressing the ADAM9/ EGFR signaling pathway in colon cancer. Oncol. Rep., 2017; 37: 123-130
  63. Carloni V., Mazzocca A., Mello T., Galli A., Capaccioli S.: Cell fusion promotes chemoresistance in metastatic colon carcinoma. Oncogene, 2013; 32: 2649-2660
  64. Kyula J.N., Van Schaeybroeck S., Doherty J., Fenning C.S., Longley D.B., Johnston P.G.: Chemotherapy-induced activation of ADAM-17: A novel mechanism of drug resistance in colorectal cancer. Clin. Cancer Res., 2010; 16: 3378-3389
Language: English
Page range: 674 - 682
Submitted on: May 5, 2020
Accepted on: May 25, 2021
Published on: Oct 21, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Magdalena Sikora-Skrabaka, Katarzyna Walkiewicz, Ewa Nowakowska-Zajdel, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.