References
- Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A.: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018; 68: 394-424
- Duffy M.J., McKiernan E., O’Donovan N., McGowan P.M.: Role of ADAMs in cancer formation and progression. Clin. Cancer Res., 2009; 15: 1140-1144
- Walkiewicz K., Kozieł P., Bednarczyk M., Błażelonis A., Mazurek U., Muc-Wierzgoń M.: Expression of migration-related genes in human colorectal cancer and activity of a disintegrin and metalloproteinase 17. Biomed Res. Int., 2016; 2016: 8208904
- Walkiewicz K., Nowakowska-Zajdel E., Kozieł P., Muc-Wierzgoń M.: The role of some ADAM-proteins and activation of the insulin growth factor-related pathway in colorectal cancer. Cent. Eur. J. Immunol., 2018; 43: 109-113
- Fushida S., Oyama K., Kinoshita J., Yagi Y., Okamoto K., Tajima H., Ninomiya I., Fujimura T., Ohta T.: VEGF is a target molecule for peritoneal metastasis and malignant ascites in gastric cancer: Prognostic significance of VEGF in ascites and efficacy of anti-VEGF monoclonal antibody. Onco. Targets Ther., 2013; 6: 14451451
- Gao M.Q., Kim B.G., Kang S., Choi Y.P., Yoon J.H., Cho N.H.: Human breast cancer-associated fibroblasts enhance cancer cell proliferation through increased TGF-α cleavage by ADAM17. Cancer Lett., 2013; 336: 240-246
- Mochizuki S., Okada Y.: ADAM28 as a target for human cancers. Curr. Pharm. Des., 2009; 15: 2349-2358
- Stawikowska R., Cudic M., Giulianotti M., Houghten R.A., Fields G.B., Minond D.: Activity of ADAM17 (a disintegrin and metalloprotease 17) is regulated by its noncatalytic domains and secondary structure of its substrates. J. Biol. Chem., 2013; 288: 22871-22879
- Jones J.C., Rustagi S., Dempsey P.J.: ADAM proteases and gastrointestinal function. Annu. Rev. Physiol., 2016; 78: 243-276
- Zhou Z., Ran Y.L., Hu H., Pan J., Li Z.F., Chen L.Z., Sun L.C., Peng L., Zhao X.L., Yu L. i wsp.: TM4SF3 promotes esophageal carcinoma metastasis via upregulating ADAM12m expression. Clin. Exp. Metastasis, 2008; 25: 537-548
- Liu H.B., Zhu Y., Yang Q.C., Shen Y., Zhang X.J., Chen H.: Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma. Genet. Mol. Res., 2015; 14: 43914398
- Lo P.H., Lung H.L., Cheung A.K., Apte S.S., Chan K.W., Kwong F.M., Ko J.M., Cheng Y., Law S., Srivastava G. i wsp.: Extracellular protease ADAMTS9 suppresses esophageal and nasopharyngeal carcinoma tumor formation by inhibiting angiogenesis. Cancer Res., 2010; 70: 5567-5576
- Kauttu T., Mustonen H., Vainionpää S., Krogerus L., Ilonen I., Räsänen J., Salo J., Puolakkainen P.: Disintegrin and metalloproteinases (ADAMs) expression in gastroesophageal reflux disease and in esophageal adenocarcinoma. Clin. Transl. Oncol., 2017; 19: 58-66
- Yoshimura T., Tomita T., Dixon M.F., Axon A.T., Robinson P.A., Crabtree J.E.: ADAMs (a disintegrin and metalloproteinase) messenger RNA expression in Helicobacter pylori – infected, normal, and neoplastic gastric mucosa. J. Infect. Dis., 2002; 185: 332-340
- Wang Y.Y., Ye Z.Y., Li L., Zhao Z.S., Shao Q.S., Tao H.Q.: ADAM 10 is associated with gastric cancer progression and prognosis of patients. J. Surg. Oncol., 2011; 103: 116-123
- Shou Z.X., Jin X., Zhao Z.S.: Upregulated expression of ADAM17 is a prognostic marker for patients with gastric cancer. Ann. Surg., 2012; 256: 1014-1022
- Zhang T.C., Zhu W.G., Huang M.D., Fan R.H., Chen X.F.: Prognostic value of ADAM17 in human gastric cancer. Med. Oncol., 2012; 29: 2684-2690
- Aydin D., Bilici A., Yavuzer D., Kefeli U., Tan A., Ercelep O., Mert A., Yuksel S., Ozcelik M., Isik D. i wsp.: Prognostic significance of ADAM17 expression in patients with gastric cancer who underwent curative gastrectomy. Clin. Transl. Oncol., 2015; 17: 604-611
- Li W., Wang D., Sun X., Zhang Y., Wang L., Suo J.: ADAM17 promotes lymph node metastasis in gastric cancer via activation of the Notch and Wnt signaling pathways. Int. J. Mol. Med., 2019; 43: 914-926
- Ebi M., Kataoka H., Shimura T., Kubota E., Hirata Y., Mizushima T., Mizoshita T., Tanaka M., Mabuchi M., Tsukamoto H. i wsp.: TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells. Biochem. Biophys. Res. Commun., 2010; 402: 449-454
- Nakagawa M., Nabeshima K., Asano S., Hamasaki M., Uesugi N., Tani H., Yamashita Y., Iwasaki H.: Up-regulated expression of ADAM17 in gastrointestinal stromal tumors: Coexpression with EGFR and EGFR ligands. Cancer Sci., 2009; 100: 654-662
- Carl-McGrath S., Lendeckel U., Ebert M., Roessner A., Röcken C.: The disintegrin-metalloproteinases ADAM9, ADAM12, and ADAM15 are upregulated in gastric cancer. Int. J. Oncol., 2005; 26: 17-24
- Kim K.E., Song H., Hahm C., Yoon S.Y., Park S., Lee H.R., Hur D.Y., Kim T., Kim C.H., Bang S.I. i wsp.: Expression of ADAM33 is a novel regulatory mechanism in IL-18-secreted process in gastric cancer. J. Immunol., 2009; 182: 3548-3555
- Kim J.M., Jeung H.C., Rha S.Y., Yu E.J., Kim T.S., Shin Y.K., Zhang X., Park K.H., Park S.W., Chung H.C. i wsp.: The effect of disintegrin-metalloproteinase ADAM9 in gastric cancer progression. Mol. Cancer Ther., 2014; 13: 3074-3085
- Wang J., Zhou Y., Fei X., Chen X., Yan J., Liu B., Zhu Z.: ADAM9 functions as a promoter of gastric cancer growth which is negatively and post-transcriptionally regulated by miR-126. Oncol. Rep., 2017; 37: 2033-2040
- Huang J., Bai Y., Huo L., Xiao J., Fan X., Yang Z., Chen H., Yang Z.: Upregulation of a disintegrin and metalloprotease 8 is associated with progression and prognosis of patients with gastric cancer. Transl. Res., 2015; 166: 602-613
- Chung H.W., Kim J.J., Choi J.I., Lee H.R., Lim J.B.: A disintegrin and metalloproteinase 8 as a potential blood biomarker for early diagnosis of gastric cancer. Yonsei Med. J., 2019; 60: 713-719
- Chen H., Wang S.: Clinical significance of ADAM29 promoting the invasion and growth of gastric cancer cells in vitro. Oncol. Lett., 2018; 16: 1483-1490
- Ilic M, Ilic I.: Epidemiology of pancreatic cancer. World J. Gastroenterol., 2016; 22: 9694-9705
- Stewart B.W., Wild C.P.: World cancer report 2014. International Agency for Research on Cancer, Lyon 2014
- Gaida M.M., Haag N., Günther F., Tschaharganeh D.F., Schirmacher P., Friess H., Giese N.A., Schmidt J., Wente M.N.: Expression of A disintegrin and metalloprotease 10 in pancreatic carcinoma. Int. J. Mol. Med., 2010; 26: 281-288
- Ringel J., Jesnowski R., Moniaux N., Lüttges J., Ringel J., Choudhury A., Batra S.K., Klöppel G., Löhr M.: Aberrant expression of a disintegrin and metalloproteinase 17/tumor necrosis factor-α converting enzyme increases the malignant potential in human pancreatic ductal adenocarcinoma. Cancer Res., 2006; 66: 9045-9053
- Valkovskaya N., Kayed H., Felix K., Hartmann D., Giese N.A., Osinsky S.P., Friess H., Kleeff J.: ADAM8 expression is associated with increased invasiveness and reduced patient survival in pancreatic cancer. J. Cell. Mol. Med., 2007; 11: 1162-1174
- Valkovskaya N.V: Hypoxia-dependent expression of ADAM8 in human pancreatic cancer cell lines. Exp. Oncol., 2008; 30: 129132
- Puolakkainen P., Koski A., Vainionpää S., Shen Z., Repo H., Kemppainen E., Mustonen H., Seppänen H.: Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med. Oncol., 2014; 31: 884
- Gao Y., Yu X., Zhang F., Dai J.: Propofol inhibits pancreatic cancer progress under hypoxia via ADAM8. J. Hepatobiliary Pancreat. Sci., 2019; 26: 219-226
- Grützmann R., Lüttges J., Sipos B., Ammerpohl O., Dobrowolski F., Alldinger I., Kersting S., Ockert D., Koch R., Kalthoff H. i wsp.: ADAM9 expression in pancreatic cancer is associated with tumour type and is a prognostic factor in ductal adenocarcinoma. Br. J. Cancer, 2004; 90: 1053-1058
- Oria V.O., Lopatta P., Schmitz T., Preca B.T., Nyström A., Conrad C., Bartsch J.W., Kulemann B., Hoeppner J., Maurer J. i wsp.: ADAM9 contributes to vascular invasion in pancreatic ductal adenocarcinoma. Mol. Oncol., 2019; 13: 456-479
- Duan X., Mao X., Sun W.: ADAM15 is involved in MICB shedding and mediates the effects of gemcitabine on MICB shedding in PANC-1 pancreatic cancer cells. Mol. Med. Rep., 2013; 7: 991-997
- Woods N., Trevino J., Coppola D., Chellappan S., Yang S., Padmanabhan J.: Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget, 2015; 6: 35931-35948
- Ye J., Yuen S.M., Murphy G., Xie R., Kwok H.F.: Anti-tumor effects of a ‘human & mouse cross-reactive’ anti-ADAM17 antibody in a pancreatic cancer model in vivo. Eur. J. Pharm. Sci., 2017; 110: 62-69
- Schlomann U., Koller G., Conrad C., Ferdous T., Golfi P., Garcia A.M., Höfling S., Parsons M., Costa P., Soper R. i wsp.: ADAM8 as a drug target in pancreatic cancer. Nat. Commun., 2015; 6: 6175
- Moss M.L., Minond D.: Recent advances in ADAM17 research: A promising target for cancer and inflammation. Mediators Inflamm., 2017; 2017: 9673537
- Terzić J., Grivennikov S., Karin E., Karin M.: Inflammation and colon cancer. Gastroenterology, 2010; 138: 2101-2114
- Blanchot-Jossic F., Jarry A., Masson D., Bach-Ngohou K., Paineau J., Denis M.G., Laboisse C.L., Mosnier J.F.: Up-regulated expression of ADAM17 in human colon carcinoma: Co-expression with EGFR in neoplastic and endothelial cells. J. Pathol., 2005; 207: 156-163
- Das S., Czarnek M., Bzowska M., Mężyk-Kopeć R., Stalińska K., Wyroba B., Sroka J., Jucha J., Deneka D., Stokłosa P. i wsp.: ADAM17 silencing in mouse colon carcinoma cells: The effect on tumoricidal cytokines and angiogenesis. PLoS One, 2012; 7: e50791
- Lin H.M., Chatterjee A., Lin Y.H., Anjomshoaa A., Fukuzawa R., McCall J.L., Reeve A.E.: Genome wide expression profiling identifies genes associated with colorectal liver metastasis. Oncol. Rep., 2007; 17: 1541-1549
- Van Schaeybroeck S., Kyula J.N., Fenton A., Fenning C.S., Sasazuki T., Shirasawa S., Longley D.B., Johnston P.G.: Oncogenic Kras promotes chemotherapy-induced growth factor shedding via ADAM17. Cancer Res., 2011; 71: 1071-1080
- Rios-Doria J., Sabol D., Chesebrough J., Stewart D., Xu L., Tammali R., Cheng L., Du Q., Schifferli K., Rothstein R. i wsp.: A monoclonal antibody to ADAM17 inhibits tumor growth by inhibiting EGFR and non-EGFR-mediated pathways. Mol. Cancer Ther., 2015; 14: 1637-1649
- Dempsey P.J.: Role of ADAM10 in intestinal crypt homeostasis and tumorigenesis. Biochim. Biophys. Acta, 2017; 1864: 22282239
- Knösel T., Emde A., Schlüns K., Chen Y., Jürchott K., Krause M., Dietel M., Petersen I.: Immunoprofiles of 11 biomarkers using tissue microarrays identify prognostic subgroups in colorectal cancer. Neoplasia, 2005; 7: 741-747
- Walkiewicz K., Strzelczyk J., Waniczek D., Biernacki K., Muc-Wierzgoń M., Copija A., Nowakowska-Zajdel E.: Adamalysines as biomarkers and a potential target of therapy in colorectal cancer patients: Preliminary results. Dis. Markers, 2019; 2019: 5035234
- Nowakowska-Zajdel E., Mazurek U., Wierzgoń J., Kokot T., Fatyga E., Ziółko E., Klakla K., Błazelonis A., Waniczek D., Głogowski Ł. i wsp.: Expression of ADAM28 and IGFBP-3 genes in patients with colorectal cancer – a preliminary report. Int. J. Immunopathol. Pharmacol., 2013; 26: 223-228
- Mochizuki S., Ao T., Sugiura T., Yonemura K., Shiraishi T., Kajiwara Y., Okamoto K., Shinto E., Okada Y., Ueno H.: Expression and function of a disintegrin and metalloproteinases in cancerassociated fibroblasts of colorectal cancer. Digestion, 2020; 101: 18-24
- Yang Z., Bai Y., Huo L., Chen H., Huang J., Li J., Fan X., Yang Z., Wang L., Wang J.: Expression of A disintegrin and metalloprotease 8 is associated with cell growth and poor survival in colorectal cancer. BMC Cancer, 2014; 14: 568
- Hirao T., Nanba D., Tanaka M., Ishiguro H., Kinugasa Y., Doki Y., Yano M., Matsuura N., Monden M., Higashiyama S.: Overexpression of ADAM9 enhances growth factor-mediated recycling of E-cadherin in human colon cancer cell line HT29 cells. Exp. Cell Res., 2006; 312: 331-339
- Mazzocca A., Coppari R., De Franco R., Cho J.Y., Libermann T.A., Pinzani M., Toker A.: A secreted form of ADAM9 promotes carcinoma invasion through tumor-stromal interactions. Cancer Res., 2005; 65: 4728-4738
- Toquet C., Colson A., Jarry A., Bezieau S., Volteau C., Boisseau P., Merlin D., Laboisse C.L., Mosnier J.F.: ADAM15 to α5β1 integrin switch in colon carcinoma cells: A late event in cancer progression associated with tumor dedifferentiation and poor prognosis. Int. J. Cancer, 2012; 130: 278-287
- Wang J., Li H., Wang Y., Wang L., Yan X., Zhang D., Ma X., Du Y., Liu X., Yang Y.: MicroRNA-552 enhances metastatic capacity of colorectal cancer cells by targeting a disintegrin and metalloprotease 28. Oncotarget, 2016; 7: 70194-70210
- Li L.X., Lam I.H., Liang F.F., Yi S.P., Ye L.F., Wang J.T., Guo W.W., Xu M.: MiR-198 affects the proliferation and apoptosis of colorectal cancer through regulation of ADAM28/JAK-STAT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019; 23: 1487-1493
- Zhang Q., Yu L., Qin D., Huang R., Jiang X., Zou C., Tang Q., Chen Y., Wang G., Wang X., Gao X.: Role of microRNA-30c targeting ADAM19 in colorectal cancer. PLoS One, 2015; 10: e0120698
- Fu Q., Cheng J., Zhang J., Zhang Y., Chen X., Luo S., Xie J.: MiR-20b reduces 5-FU resistance by suppressing the ADAM9/ EGFR signaling pathway in colon cancer. Oncol. Rep., 2017; 37: 123-130
- Carloni V., Mazzocca A., Mello T., Galli A., Capaccioli S.: Cell fusion promotes chemoresistance in metastatic colon carcinoma. Oncogene, 2013; 32: 2649-2660
- Kyula J.N., Van Schaeybroeck S., Doherty J., Fenning C.S., Longley D.B., Johnston P.G.: Chemotherapy-induced activation of ADAM-17: A novel mechanism of drug resistance in colorectal cancer. Clin. Cancer Res., 2010; 16: 3378-3389