Ahmad E., Fatima M.T., Hoque M., Owais M., Saleemuddin M.: Fibrin matrices: The versatile therapeutic delivery systems. Int. J. Biol. Macromol., 2015; 81: 121-136
Ahn J., Kim S.A., Kim K.W., Oh J.H., Kim S.J.: Optimization of TGF-β1-transduced chondrocytes for cartilage regeneration in a 3D printed knee joint model. PLoS One, 2019; 14: e0217601
Akpalo E., Bidault L., Boissière M., Vancaeyzeele C., Fichet O., Garde V.: Fibrin-polyethylene oxide interpenetrating polymer networks: new self-supported biomaterials combining the properties of both protein gel and synthetic polymer. Acta Biomater., 2011; 7: 2418-2427
Arrighi I., Mark S., Alvisi M., von Rechenberg B., Hubbell J.A., Schense J.C.: Bone healing induced by local delivery of an engineered parathyroid hormone prodrug. Biomaterials, 2009; 30: 1763-1771
Bacakova M., Musilkova J., Riedel T., Stranska D., Brynda E., Bacakova L., Zaloudkova M.: The potential applications of fibrincoated electrospun polylactide nanofibers in skin tissue engineering. Int. J. Nanomedicine, 2016; 11: 771-789
Brown A.C., Barker T.H.: Fibrin-based biomaterials: modulation of macroscopic properties through rational design at the molecular level. Acta Biomater., 2014; 10: 1502-1514
Bujoli B., Scimeca J.: Fibrin as a multipurpose physiological platform for bone tissue engineering and targeted delivery of bioactive compounds. Pharmaceutics, 2019; 11: 1-15
Cha D.M., Kim K.H., Choi H.J., Kim M.K., Wee W.R.: A comparative study of the effect of fibrin glue versus sutures on clinical outcome in patients undergoing pterygium excision and conjunctival autografts. Korean J. Ophthalmol., 2012; 26: 407-413
Cholewinski E., Dietrich M., Flanagan T.C., Schmitz-Rode T., Jockenhoevel S.: Tranexamic acid-an alternative to aprotinin in fibrin-based cardiovascular tissue engineering. Tissue Eng. Part A, 2009; 15: 3645-3653
Ciardulli M.C., Marino L., Lovecchio J., Giordano E., Forsyth N.R., Selleri C., Ma N., Porta G.: Tendon and cytokine marker expression by human bone marrow mesenchymal stem cells in a hyaluronate/poly-lactic-co-glycolic acid (PLGA)/fibrin three-dimensional (3D) scaffold. Cells, 2020; 9: 1268
Collen A., Smorenburg S., Peters E., Lupu F., Koolwijk P., van Noorden C., van Hinsbergh V.: Unfractionated and low molecular weight heparin affect fibrin structure and angiogenesis in vitro. Cancer Res., 2000; 60: 6196-6200
De Cristofaro R., de Candia E.: Thrombin domains: structure, function and interaction with platelet receptors. J. Thromb. Thrombolysis, 2003; 15: 151-163
Dietrich M., Heselhaus J., Wozniak J., Weinandy S., Mela P., Tschoeke B., Schmitz-Rode T., Jockenhoevel S.: Fibrin-based tissue engineering: comparison of different methods of autologous fibrinogen isolation. Tissue Eng. Part C Methods, 2013; 19: 216226
Drinnan C.T., Zhang G., Alexander M.A., Pulido A.S., Suggs L.J.: Multimodal release of transforming growth factor-β1 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels. J. Control. Release, 2010; 147: 180-186
Ehrbar M., Metters A., Zammaretti P., Hubbell J.A., Zisch A.H.: Endothelial cell proliferation and progenitor maturation by fibrin-bound VEGF variants with differential susceptibilities to local cellular activity. J. Control. Release, 2005; 101: 93-109
Ferguson J., Nürnberger S., Redl H.: Fibrin: the very first biomimetic glue - still a great tool. W: Biological adhesive systems, red.: J. von Byern, I. Grunwald. Springer Vienna, 2010, 225-236
Gandossi E., Lunven C., Berry C.N.: Role of clot-associated (-derived) thrombin in cell proliferation induced by fibrin clots in vitro. Br. J. Pharmacol., 2000; 129: 1021-1027
Gorkun O.V., Veklich Y.I., Medved L.V., Henschen A.H., Weisel J.W.: Role of the .alpha.c domains of fibrin in clot formation. Biochemistry, 1994; 33: 6986-6997
Gray A., Reeves J., Harrison N., Winlove P., Laurent G.: Growth factors for human fibroblasts in the solute remaining after clot formation. J. Cell. Sci., 1990; 96: 271-274
Gugerell A., Schossleitner K., Wolbank S., Nürnberger S., Redl H., Gulle H., Goppelt A., Bittner M., Pasteiner W.: High thrombin concentrations in fibrin sealants induce apoptosis in human keratinocytes. J. Biomed. Mater. Res. Part A, 2012; 100A: 1239-1247
Hino M., Ishiko O., Honda K., Yamane T., Ohta K., Takubo T., Tatsumi N.: Transmission of symptomatic parvovirus B19 infection by fibrin sealant used during surgery. Br. J. Haematol., 2000; 108: 194-195
Hirashima M., Imamura T., Yano K., Kawamura R., Meta A., Tokieda Y., Nakashima T.: High-level expression and preparation of recombinant human fibrinogen as biopharmaceuticals. J. Bio-chem., 2016; 159: 261-270
Hojo M., Inokuchi S., Kidokoro M., Fukuyama N., Tanaka E., Tsuji C., Miyasaka M., Tanino R., Nakazawa H.: Induction of vascular endothelial growth factor by fibrin as a dermal substrate for cultured skin substitute. Plast. Reconstr. Surg., 2003; 111: 1638-1646
Jung R.E., Schmoekel H.G., Zwahlen R., Kokovic V., Hammerle C.H.F., Weber F.E.: Platelet-rich plasma and fibrin as delivery systems for recombinant human bone morphogenetic protein-2. Clin. Oral Implants Res., 2005; 16: 676-682
Kang S.W., Kim J.S., Park K.S., Cha B.H., Shim J.H., Kim J.Y., Cho D.W., Rhie J.W., Lee S.H.: Surface modification with fibrin/hyaluronic acid hydrogel on solid-free form-based scaffolds followed by BMP-2 loading to enhance bone regeneration. Bone, 2011; 48: 298-306
Kawamura M., Sawafuji M., Watanabe M., Horinouchi H., Kobayashi K.: Frequency of transmission of human parvovirus B19 infection by fibrin sealant used during thoracic surgery. Ann. Thorac. Surg., 2002; 73: 1098-1100
Kay A., Pepper D., Ewart M.: Generation of chemotactic activity for leukocytes by the action of thrombin on human fibrinogen. Nat. New Biol., 1973; 243: 56-57
Lee J.H., Kang N.Y.: Comparison of fibrin glue and sutures for conjunctival wound closure in strabismus surgery. Korean J. Ophthalmol., 2011; 25: 178-184
Li Y., Meng H., Liu Y., Lee B.P.: Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Sci. World J., 2015; 2015: 1-10
Lieshout M. Van, Peters G., Rutten M., Baaijens F.: A knitted, fibrin-covered polycaprolactone scaffold for tissue engineering of the aortic valve. Tissue Eng., 2006; 12: 481-487
Malafaya P.B., Silva G.A., Reis R.L.: Natural-origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv. Drug Deliv. Rev., 2007; 59: 207233
Martino M.M., Briquez P.S., Ranga A., Lutolf M.P., Hubbell J.A.: Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci., 2013; 110: 4563-4568
Min Sun P., Sang-Soo K., Seung-Woo C., Cha Yong C., Byung-Soo K.: Enhancement of the osteogenic efficacy of osteoblast transplantation by the sustained delivery of basic fibroblast growth factor. J. Biomed. Mater. Res. Part B Appl. Biomater., 2006; 79B: 353-359
Mittermayr R., Morton T., Hofmann M., Helgerson S., van Griensven M., Redl H.: Sustained (rh)VEGF 165 release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis. Wound Repair Regen., 2008; 16: 542-550
Noori A., Ashrafi S., Vaez-Ghaemi R., Hatamian-Zaremi A., Webster T.: A review of fibrin and fibrin composites for bone tissue engineering. Int. J. Nanomedicine, 2019; 12: 4937-4961
Rahmany M.B., Hantgan R.R., van Dyke M.: A mechanistic investigation of the effect of keratin-based hemostatic agents on coagulation. Biomaterials, 2013; 34: 2492-2500
Ramanathan A., Karuri N.: Fibronectin alters the rate of formation and structure of the fibrin matrix. Biochem. Biophys. Res. Commun., 2014; 443: 395-399
Rech J., Wilińska J., Borecka A., Turek A.: Application of fibrin in drug technology: Achievements and perspectives. Postepy Hig. Med. Dosw., 2020; 74: 322-330
Robson S.C., Shephard E.G., Kirsch R.E.: Fibrin degradation product D-dimer induces the synthesis and release of biologically active IL-1β, IL-6 and plasminogen activator inhibitors from monocytes in vitro. Br. J. Haematol., 1994; 86: 322-326
Sang-Hyug P., So Ra P., Soo Il C., Ki Soo P., Byoung-Hyun M.: Tissue-engineered cartilage using fibrin/hyaluronan composite gel and its in vivo implantation. Artif. Organs, 2005; 29: 838-845
Schmoekel H., Schense J.C., Weber F.E., Grätz K.W., Gnägi D., Müller R., Hubbell J.A.: Bone healing in the rat and dog with nonglycosylated BMP-2 demonstrating low solubility in fibrin matrices. J. Orthop. Res., 2004; 22: 376-381
Schmoekel H.G., Weber F.E., Schense J.C., Grätz K.W., Schawalder P., Hubbell J.A.: Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol. Bioeng., 2005; 89: 253-262
Senior R.M., Skogen W.F., Griffin G.L., Wilner G.D.: Effects of fibrinogen derivatives upon the inflammatory response. Studies with human fibrinopeptide B. J. Clin. Invest., 1986; 77: 1014-1019
Sierra D.H.: Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J. Biomater. Appl., 1993; 7: 309-352
Smadja D.M., Basire A., Amelot A., Conte A., Bièche I., Le Bonniec B.F., Aiach M., Gaussem P.: Thrombin bound to a fibrin clot confers angiogenic and haemostatic properties on endothelial progenitor cells. J. Cell. Mol. Med., 2008; 12: 975-986
Sreerekha P.R., Menon D., Nair S. V., Chennazhi K.P.: Fabrication of fibrin based electrospun multiscale composite scaffold for tissue engineering applications. J. Biomed. Nanotechnol., 2013; 9: 790-800
Thompson W.D., Smith E.B., Stirk C.M., Marshall F.I., Stout A.J., Kocchar A.: Angiogenic activity of fibrin degradation products is located in fibrin fragment E. J. Pathol., 1992; 168: 47-53
Turek A., Stoklosa K., Borecka A., Paul-Samojedny M., Kaczmarczyk B., Marcinkowski A., Kasperczyk J.: Designing biodegradable wafers based on poly(L-lactide-co-glycolide) and poly(glycolideco-ε-caprolactone) for the prolonged and local release of idarubicin for the therapy of glioblastoma multiforme. Pharm. Res., 2020; 37: 90
Turek A., Cwalina B., Kobielarz M.: Radioisotopic investigation of crosslinking density in bovine pericardium used as a biomaterial. Nukleonika, 2013; 58: 511-517
Turek A., Wilińska J., Borecka A., Pawlus-Łachecka L.: Application of antibiotics in the sterilization of homogeneic heart valves. Postepy Hig. Med. Dosw., 2017; 71: 1187-1201
Verma K., Errico T.J., Vaz K.M., Lonner B.S.: A prospective, randomized, double-blinded single-site control study comparing blood loss prevention of tranexamic acid (TXA) to epsilon aminocaproic acid (EACA) for corrective spinal surgery. BMC Surg., 2010; 10: 13
Voge C.M., Johns J., Raghavan M., Morris M.D., Stegemann J.P.: Wrapping and dispersion of multiwalled carbon nanotubes improves electrical conductivity of protein-nanotube composite biomaterials. J. Biomed. Mater. Res. Part A, 2013; 101A: 231-238
Wang X., Sui S., Yan Y., Zhang R.: Design and fabrication of PLGA sandwiched cell/fibrin constructs for complex organ regeneration. J. Bioact. Compat. Polym., 2010; 25: 229-240
Wardrop D., Estcourt L.J., Brunskill S.J., Doree C., Trivella M., Stanworth S., Murphy M.F.: Antifibrinolytics (lysine analogues) for the prevention of bleeding in patients with haematological disorders. Cochrane Database Syst. Rev., 2016; 3: CD009733
Wilińska J., Turek A., Borecka A., Rech J., Kasperczyk J.: Electron beam sterilization of implantable rods with risperidone and with 17-β-estradiol: A structural, thermal and morphology study. Acta Bioeng. Biomech., 2019; 21: 39-47
Wood M.D., Borschel G.H., Sakiyama-Elbert S.E.: Controlled release of glial-derived neurotrophic factor from fibrin matrices containing an affinity-based delivery system. J. Biomed. Mater. Res. Part A, 2009; 89A: 909-918
Xu M., Wang X., Yan Y., Yao R., Ge Y.: An cell-assembly derived physiological 3D model of the metabolic syndrome, based on adipose-derived stromal cells and a gelatin/alginate/fibrinogen matrix. Biomaterials, 2010; 31: 3868-3877
Xu W., Wang X., Yan Y., Zheng W., Xiong Z., Lin F., Wu R., Zhang R.: Rapid prototyping three-dimensional cell/gelatin/fibrinogen constructs for medical regeneration. J. Bioact. Compat. Polym., 2007; 22: 363-377
Ye Q., Zünd G., Benedikt P., Jockenhoevel S., Hoerstrup S.P., Sakyama S., Hubbell J.A., Turina M.: Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur. J. Cardio-Thoracic Surg., 2000; 17: 587-591
Zhang L., Zhang L., Lan X., Xu M., Mao Z., Lv H., Yao Q., Tang P.: Improvement in angiogenesis and osteogenesis with modified cannulated screws combined with VEGF/PLGA/fibrin glue in femoral neck fractures. J. Mater. Sci. Mater. Med., 2014; 25: 1165-1172
Zhao W., Han Q., Lin H., Sun W., Gao Y., Zhao Y., Wang B., Wang X., Chen B., Xiao Z., Dai J.: Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis. Tissue Eng. Part A, 2009; 15: 991-998
Zhu S.-J., Choi B.-H., Jung J.-H., Lee S.-H., Huh J.-Y., You T.-M., Lee H.-J., Li J.: A comparative histologic analysis of tissue-engineered bone using platelet-rich plasma and platelet-enriched fibrin glue. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., 2006; 102: 175-179