References
- Mosser D.M., Edwards J.P.: Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008; 8: 958-969
- Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., Hamilton J.A., Ivashkiv L.B., Lawrence T. i wsp.: Macrophage activation and polarization: Nomenclature and experimental guidelines. Immunity, 2014; 41: 14-20
- Xue J., Schmidt S.V., Sander J., Draffehn A., Krebs W., Quester I., De Nardo D., Gohel T.D., Emde M., Schmidleithner L. i wsp.: Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 2014; 40: 274-288
- Nazimek K., Bryniarski K.: Aktywność biologiczna makrofagów w zdrowiu i chorobie. Postępy Hig. Med. Dośw., 2012; 66: 507-520
- Murray P.J., Wynn T.A.: Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011; 11: 723-737
- Martinez F.O., Sica A., Mantovani A., Locati M.: Macrophage activation and polarization. Front. Biosci., 2008; 13: 453-461
- Ginhoux F., Greter M., Leboeuf M., Nandi S., See P., Gokhan S., Mehler M.F., Conway S.J., Ng L.G., Stanley E.R. i wsp.: Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science, 2010; 330: 841-845
- Tremblay M.È., Sierra A. (red.): Microglia in Health and Disease. Springer-Verlag New York, New York 2014
- Ransohoff R.M.: A polarizing question: Do M1 and M2 microglia exist? Nat. Neurosci., 2016; 19: 987-991
- Cherry J.D., Olschowka J.A., O’Banion M.K.: Neuroinflammation and M2 microglia: The good, the bad, and the inflamed. J. Neuro-inflammation, 2014; 11: 98
- Raciborski F., Gawińska E., Kłak A., Słowik A., Wnuk M.: Udary mózgu: rosnący problem w starzejącym się społeczeństwie. Instytut Ochrony Zdrowia w Polsce, Warszawa 2016
- Kacperska M.J., Jastrzȩbski K., Głąbiński A.: Procesy patologiczne w mózgu podczas jego niedokrwienia. Aktualn. Neurol., 2013; 13: 16-23
- Morrison H.W., Filosa J.A.: A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion. J. Neuroinflammation, 2013; 10: 4
- Perego C., Fumagalli S., De Simoni M.G.: Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J. Neuroinflammation, 2011; 8: 174
- Li T., Pang S., Yu Y., Wu X., Guo J., Zhang S.: Proliferation of parenchymal microglia is the main source of microgliosis after ischaemic stroke. Brain, 2013; 136: 3578-3588
- Schilling M., Besselmann M., Müller M., Strecker J.K., Ringel-stein E.B., Kiefer R.: Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: An investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp. Neurol., 2005; 196: 290-297
- Emerich D.F., Dean R.L.3rd, Bartus R.T.: The role of leukocytes following cerebral ischemia: Pathogenic variable or bystander reaction to emerging infarct? Exp. Neurol., 2002; 173: 168-181
- Nilupul Perera M., Ma H.K., Arakawa S., Howells D.W., Markus R., Rowe C.C., Donnan G.A.: Inflammation following stroke. J. Clin. Neurosci., 2006; 13: 1-8
- Lampron A., Larochelle A., Laflamme N., Préfontaine P., Plante M.M., Sánchez M.G., Yong V.W., Stys P.K., Tremblay M.È., Rivest S.: Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med., 2015; 212: 481-495
- Xiong X.Y., Liu L., Yang Q.W.: Functions and mechanisms of microglia/macrophages in neuroinflammation and neurogenesis after stroke. Prog. Neurobiol., 2016; 142: 23-44
- Fernández D.J., Lamkanfi M.: Inflammatory caspases: Key regulators of inflammation and cell death. Biol. Chem., 2015; 396: 193203
- Gelderblom M., Weymar A., Bernreuther C., Velden J., Arunachalam P., Steinbach K., Orthey E., Arumugam T.V., Leypoldt F., Simova O. i wsp.: Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood, 2012; 120: 3793-3802
- Gelosa P., Lecca D., Fumagalli M., Wypych D., Pignieri A., Cimino M., Verderio C., Enerbäck M., Nikookhesal E., Tremoli E. i wsp.: Microglia is a key player in the reduction of stroke damage promoted by the new antithrombotic agent ticagrelor. J. Cereb. Blood Flow Metab., 2014; 34: 979-988
- Riboldi E., Porta C., Morlacchi S., Viola A., Mantovani A., Sica A.: Hypoxia-mediated regulation of macrophage functions in patho-physiology. Int. Immunol., 2013; 25: 67-75
- Ritzel R.M., Patel A.R., Grenier J.M., Crapser J., Verma R., Jellison E.R., McCullough L.D.: Functional differences between microglia and monocytes after ischemic stroke. J. Neuroinflammation, 2015; 12: 106
- Girard S., Brough D., Lopez-Castejon G., Giles J., Rothwell N.J., Allan S.M.: Microglia and macrophages differentially modulate cell death after brain injury caused by oxygen-glucose deprivation in organotypic brain slices. Glia, 2013; 61: 813-824
- Yamasaki R., Lu H., Butovsky O., Ohno N., Rietsch A.M., Cialic R., Wu P.M., Doykan C.E., Lin J., Cotleur A.C. i wsp.: Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med., 2014; 211: 1533-1549
- Wattananit S., Tornero D., Graubardt N., Memanishvili T., Monni E., Tatarishvili J., Miskinyte G., Ge R., Ahlenius H., Lindvall O. i wsp.: Monocyte-derived macrophages contribute to spontaneous long-term functional recovery after stroke in mice. J. Neurosci., 2016; 36: 4182-4195
- Zhao X., Sun G., Zhang J., Strong R., Song W., Gonzales N., Grotta J.C., Aronowski J.: Hematoma resolution as a target for intracerebral hemorrhage treatment: Role for peroxisome proliferator-activated receptor γ in microglia/macrophages. Ann. Neurol., 2007; 61: 352-362
- Lin S., Yin Q., Zhong Q., Lv F.L., Zhou Y., Li J.Q., Wang J.Z., Su B.Y., Yang Q.W.: Heme activates TLR4-mediated inflammatory injury via MyD88/TRIF signaling pathway in intracerebral hemorrhage. J. Neuroinflammation, 2012; 9: 46
- Fang H., Chen J., Lin S., Wang P., Wang Y., Xiong X., Yang Q.: CD36-mediated hematoma absorption following intracerebral hemorrhage: Negative regulation by TLR4 signaling. J. Immunol, 2014; 192: 5984-5992
- Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J.: Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke, 2012; 43: 3063-3070
- Suenaga J., Hu X., Pu H., Shi Y., Hassan S.H., Xu M., Leak R.K., Stetler R.A., Gao Y., Chen J.: White matter injury and microglia/ macrophage polarization are strongly linked with age-related longterm deficits in neurological function after stroke. Exp. Neurol., 2015; 272: 109-119
- Taylor R.A., Hammond M.D., Ai Y., Sansing L.H.: CX3CR1-null microglia fail to transition to an M2 phenotype after intracerebral hemorrhage. Stroke, 2015; 46: A114-A114
- Kerr N., Dietrich D.W., Bramlett H.M., Raval A.P.: Sexually dimorphic microglia and ischemic stroke. CNS Neurosci. Ther., 2019; 25: 1308-1317
- Ma Y., Wang J., Wang Y., Yang G.Y.: The biphasic function of microglia in ischemic stroke. Prog. Neurobiol., 2017; 157: 247-272
- Hu X., Leak R.K., Shi Y., Suenaga J., Gao Y., Zheng P., Chen J.: Microglial and macrophage polarization – new prospects for brain repair. Nat. Rev. Neurol., 2015; 11: 56-64
- Chu H.X., Broughton B.R., Kim H.A., Lee S., Drummond G.R., Sobey C.G.: Evidence that Ly6Chi monocytes are protective in acute ischemic stroke by promoting M2 macrophage polarization. Stroke, 2015; 46: 1929-1937
- Wang G., Zhang J., Hu X., Zhang L., Mao L., Jiang X., Liou A.K., Leak R.K., Gao Y., Chen J.: Microglia/macrophage polarization dynamics in white matter after traumatic brain injury. J. Cereb. Blood Flow Metab., 2013; 33: 1864-1874
- Nikodemova M., Duncan I.D., Watters J.J.: Minocycline exerts inhibitory effects on multiple mitogen-activated protein kinases and IκBα degradation in a stimulus-specific manner in microglia. J. Neurochem., 2006; 96: 314-323
- Malhotra K., Chang J.J., Khunger A., Blacker D., Switzer J.A., Goyal N., Hernandez A.V., Pasupuleti V., Alexandrov A.V., Tsivgoulis G.: Minocycline for acute stroke treatment: A systematic review and meta-analysis of randomized clinical trials. J. Neurol., 2018; 265: 1871-1879
- Pan J., Jin J.L., Ge H.M., Yin K.L., Chen X., Han L.J., Chen Y., Qian L., Li X.X., Xu Y.: Malibatol A regulates microglia M1/M2 polarization in experimental stroke in a PPARγ-dependent manner. J. Neuroinflammation, 2015; 12: 51
- Han L., Cai W., Mao L., Liu J., Li P., Leak R.K., Xu Y., Hu X., Chen J.: Rosiglitazone promotes white matter integrity and long-term functional recovery after focal cerebral ischemia. Stroke, 2015; 46: 2628-2636
- Desestret V., Riou A., Chauveau F., Cho T.H., Devillard E., Marinescu M., Ferrera R., Rey C., Chanal M., Angoulvant D. i wsp.: In vitro and in vivo models of cerebral ischemia show discrepancy in therapeutic effects of M2 macrophages. PLoS One, 2013; 8: e67063
- Stratton J.A., Shah P.T.: Macrophage polarization in nerve injury: Do Schwann cells play a role? Neural Regen. Res., 2016; 11: 5357
- Gaudet A.D., Popovich P.G., Ramer M.S.: Wallerian degeneration: Gaining perspective on inflammatory events after peripheral nerve injury. J. Neuroinflammation, 2011; 8: 110
- Kigerl K.A., Gensel J.C., Ankeny D.P., Alexander J.K., Donnelly D.J., Popovich P.G.: Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J. Neurosci., 2009; 29: 13435-13444
- Kong X., Gao J.: Macrophage polarization: A key event in the secondary phase of acute spinal cord injury. J. Cell. Mol. Med., 2017; 21: 941-954
- Wang X., Cao K., Sun X., Chen Y., Duan Z., Sun L., Guo L., Bai P., Sun D., Fan J. i wsp.: Macrophages in spinal cord injury: Phenotypic and functional change from exposure to myelin debris. Glia, 2015; 63: 635-651
- Galtrey C.M., Fawcett J.W.: The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev., 2007; 54: 1-18
- Zhang Y., Liu Z., Zhang W., Wu Q., Zhang Y., Liu Y., Guan Y., Chen X.: Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J. Neurosci. Res., 2019; 97: 733-743
- Zabłocka A.: Choroba Alzheimera jako przykład schorzenia neurodegeneracyjnego. Postępy Hig. Med. Dośw., 2006; 60: 209-216
- Cunningham C.: Microglia and neurodegeneration: The role of systemic inflammation. Glia, 2013; 61: 71-90
- Wegiel J., Wang K.C., Imaki H., Rubenstein R., Wronska A., Osuchowski M., Lipinski W.J., Walker L.C., LeVine H.: The role of microglial cells and astrocytes in fibrillar plaque evolution in transgenic APP(SW) mice. Neurobiol. Aging, 2001; 22: 49-61
- Colton C.A., Mott R.T., Sharpe H., Xu Q., van Nostrand W.E., Vitek M.P.: Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J. Neuroinflammation, 2006; 3: 27
- Simard A.R., Soulet D., Gowing G., Julien J.P., Rivest S.: Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer’s disease. Neuron, 2006; 49: 489502
- Spangenberg E.E., Green K.N.: Inflammation in Alzheimer’s disease: Lessons learned from microglia-depletion models. Brain Behav. Immun., 2017; 61: 1-11
- Yao K., Zu H.B.: Microglial polarization: Novel therapeutic mechanism against Alzheimer’s disease. Inflammopharmacol., 2020; 28: 95-110
- Hoozemans J.J., Veerhuis R., Rozemuller J.M., Eikelenboom P.: Neuroinflammation and regeneration in the early stages of Alzheimer’s disease pathology. Int. J. Dev. Neurosci., 2006; 24: 157-165
- Blalock E.M., Geddes J.W., Chen K.C., Porter N.M., Markesbery W.R., Landfield P.W.: Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proc. Natl. Acad. Sci. USA, 2004; 101: 21732178
- Xu P.T., Li Y.J., Qin X.J., Scherzer C.R., Xu H., Schmechel D.E., Hulette C.M., Ervin J., Gullans S.R., Haines J. i wsp.: Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol. Dis., 2006; 21: 256-275
- Colangelo V., Schurr J., Ball M.J., Pelaez R.P., Bazan N.G., Lukiw W.J.: Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J. Neurosci. Res., 2002; 70: 462-473
- Wang G., Zhang Y., Chen B., Cheng J.: Preliminary studies on Alzheimer’s disease using cDNA microarrays. Mech. Ageing Dev., 2003; 124: 115-124
- Bhaskar K., Konerth M., Kokiko-Cochran O.N., Cardona A., Ransohoff R.M., Lamb B.T.: Regulation of tau pathology by the microglial fractalkine receptor. Neuron, 2010; 68: 19-31
- Koenigsknecht-Talboo J., Landreth G.E.: Microglial phagocytosis induced by fibrillar β-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J. Neurosci., 2005; 25: 8240-8249
- Yamamoto M., Kiyota T., Walsh S.M., Liu J., Kipnis J., Ikezu T.: Cytokine-mediated inhibition of fibrillar amyloid-β peptide degradation by human mononuclear phagocytes. J. Immunol., 2008; 181: 3877-3886
- Qiu W.Q., Folstein M.F.: Insulin, insulin-degrading enzyme and amyloid-β peptide in Alzheimer’s disease: Review and hypothesis. Neurobiol. Aging, 2006; 27: 190-198
- Sackmann V., Ansell A., Sackmann C., Lund H., Harris R.A., Hallbeck M., Nilsberth C.: Anti-inflammatory (M2) macrophage media reduce transmission of oligomeric amyloid beta in differentiated SH-SY5Y cells. Neurobiol. Aging, 2017; 60: 173-182
- Venegas C., Kumar S., Franklin B.S., Dierkes T., Brinkschulte R., Tejera D., Vieira-Saecker A., Schwartz S., Santarelli F., Kummer M.P. i wsp.: Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature, 2017; 552: 355-361
- Su X.Q., Wang X.Y., Gong F.T., Feng M., Bai J.J., Zhang R.R., Dang X.Q.: Oral treatment with glycyrrhizin inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization after traumatic spinal cord injury. Brain Res. Bull., 2020; 158: 1-8
- Asai H., Ikezu S., Tsunoda S., Medalla M., Luebke J., Haydar T., Wolozin B., Butovsky O., Kügler S., Ikezu T.: Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat. Neurosci., 2015; 18: 1584-1593
- Yamanaka M., Ishikawa T., Griep A., Axt D., Kummer M.P., Heneka M.T.: PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J. Neurosci., 2012; 32: 17321-17331
- Gratuze M., Leyns C.E., Holtzman D.M.: New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener., 2018; 13: 66
- Oh S., Son M., Choi J., Lee S., Byun K.: sRAGE prolonged stem cell survival and suppressed RAGE-related inflammatory cell and T lymphocyte accumulations in an Alzheimer’s disease model. Biochem. Biophys. Res. Commun., 2018; 495: 807-813
- Kubiszewska J., Kwieciński H.: Stwardnienie boczne zanikowe. Postępy Nauk Med., 2010; 6: 440-448
- Mishra P.S., Vijayalakshmi K., Nalini A., Sathyaprabha T.N., Kramer B.W., Alladi P.A., Raju T.R.: Etiogenic factors present in the cerebrospinal fluid from amyotrophic lateral sclerosis patients induce predominantly pro-inflammatory responses in microglia. J. Neuroinflammation, 2017; 14: 251
- Ratti E., Berry J.D.: Amyotrophic lateral sclerosis 1 and many diseases. W: Genomics, Circuits, and Pathways in Clinical Neuropsychiatry, red.: T. Lehner, B.L. Miller, M.W. State. Academic Press, San Diego 2016, 685-712
- Boillée S., Yamanaka K., Lobsiger C.S., Copeland N.G., Jenkins N.A., Kassiotis G., Kollias G., Cleveland D.W.: Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006; 312: 1389-1392
- Xiao Q., Zhao W., Beers D.R., Yen A.A., Xie W., Henkel J.S., Appel S.H.: Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia. J. Neurochem., 2007; 102: 2008-2019
- Geloso M.C., Corvino V., Marchese E., Serrano A., Michetti F., D’Ambrosi N.: The dual role of microglia in ALS: Mechanisms and therapeutic approaches. Front. Aging Neurosci., 2017; 9: 242
- Ahmad L., Zhang S.Y., Casanova J.L., Sancho-Shimizu V.: Human TBK1: A gatekeeper of neuroinflammation. Trends Mol. Med., 2016; 22: 511-527
- Beers D.R., Zhao W., Liao B., Kano O., Wang J., Huang A., Appel S.H., Henkel J.S.: Neuroinflammation modulates distinct regional and temporal clinical responses in ALS mice. Brain Behav. Immun., 2011; 25: 1025-1035
- Liao B., Zhao W., Beers D.R., Henkel J.S., Appel S.H.: Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp. Neurol., 2012; 237: 147-152
- Gravel M., Béland L.C., Soucy G., Abdelhamid E., Rahimian R., Gravel C., Kriz J.: IL-10 controls early microglial phenotypes and disease onset in ALS caused by misfolded superoxide dismutase1. J. Neurosci., 2016; 36: 1031-1048
- Chiu I.M., Morimoto E.T., Goodarzi H., Liao J.T., O’Keeffe S., Phatnani H.P., Muratet M., Carroll M.C., Levy S., Tavazoie S. i wsp.: A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep., 2013; 4: 385-401
- Chiu I.M., Chen A., Zheng Y., Kosaras B., Tsiftsoglou S.A., Vartanian T.K., Brown R.H.Jr., Carroll M.C.: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc. Natl. Acad. Sci. USA, 2008; 105: 17913-17918
- Lewis K.E., Rasmussen A.L., Bennett W., King A., West A.K., Chung R.S., Chuah M.I.: Microglia and motor neurons during disease progression in the SOD1G93A mouse model of amyotrophic lateral sclerosis: Changes in arginase1 and inducible nitric oxide synthase. J. Neuroinflammation, 2014; 11: 55
- Almer G., Guégan C., Teismann P., Naini A., Rosoklija G., Hays A.P., Chen C., Przedborski S.: Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis. Ann. Neurol., 2001; 49: 176-185
- Keller A.F., Gravel M., Kriz J.: Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp. Neurol., 2011; 228: 69-79
- Apolloni S., Fabbrizio P., Parisi C., Amadio S., Volonté C.: Clemastine confers neuroprotection and induces an anti-inflammatory phenotype in SOD1G93A mouse model of amyotrophic lateral sclerosis. Mol. Neurobiol., 2016; 53: 518-531
- Juszczak M., Głąbiński A.: Udział limfocytów Th17 w patogenezie stwardnienia rozsianego. Postępy Hig. Med. Dośw., 2009; 63: 492-501
- Shin T., Ahn M., Matsumoto Y.: Mechanism of experimental autoimmune encephalomyelitis in Lewis rats: Recent insights from macrophages. Anat. Cell Biol., 2012; 45: 141-148
- Jack C., Ruffini F., Bar-Or A., Antel J.P.: Microglia and multiple sclerosis. J. Neurosci. Res., 2005; 81: 363-373
- Bauer J., Sminia T., Wouterlood F.G., Dijkstra C.D.: Phagocytic activity of macrophages and microglial cells during the course of acute and chronic relapsing experimental autoimmune encephalomyelitis. J. Neurosci. Res., 1994; 38: 365-375
- Ponomarev E.D., Shriver L.P., Maresz K., Dittel B.N.: Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res., 2005; 81: 374-389
- Ransohoff R.M., Engelhardt B.: The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol., 2012; 12: 623-635
- Renno T., Krakowski M., Piccirillo C., Lin J.Y., Owens T.: TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis. Regulation by Th1 cytokines. J. Immunol., 1995; 154: 944-953
- Zhao W., Tilton R.G., Corbett J.A., McDaniel M.L., Misko T.P., Williamson J.R., Cross A.H., Hickey W.F.: Experimental allergic encephalomyelitis in the rat is inhibited by aminoguanidine, an inhibitor of nitric oxide synthase. J. Neuroimmunol., 1996; 64: 123-133
- Chu F., Shi M., Zheng C., Shen D., Zhu J., Zheng X., Cui L.: The roles of macrophages and microglia in multiple sclerosis and experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2018; 318: 1-7
- Ahn M., Yang W., Kim H., Jin J.K., Moon C., Shin T.: Immunohistochemical study of arginase-1 in the spinal cords of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res., 2012; 1453: 77-86
- Ponomarev E.D., Maresz K., Tan Y., Dittel B.N.: CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci., 2007; 27: 10714-10721
- Mikita J., Dubourdieu-Cassagno N., Deloire M.S., Vekris A., Biran M., Raffard G., Brochet B., Canron M.H., Franconi J.M., Boiziau C., Petry K.G.: Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult. Scler. J., 2011; 17: 2-15
- Vaknin I., Kunis G., Miller O., Butovsky O., Bukshpan S., Beers D.R., Henkel J.S., Yoles E., Appel S.H., Schwartz M.: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis. PLoS One, 2011; 6: e26921
- Moreno M., Bannerman P., Ma J., Guo F., Miers L., Soulika A.M., Pleasure D.: Conditional ablation of astroglial CCL2 suppresses CNS accumulation of M1 macrophages and preserves axons in mice with MOG peptide EAE. J. Neurosci., 2014; 34: 8175-8185
- Benedek G., Zhang J., Nguyen H., Kent G., Seifert H., Vandenbark A.A., Offner H.: Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice. J. Neuroimmunol., 2017; 305: 59-67
- Tierney J.B., Kharkrang M., La Flamme A.C.: Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis. Immunol. Cell Biol., 2009; 87: 235-240
- Ponomarev E.D., Veremeyko T., Barteneva N., Krichevsky A.M., Weiner H.L.: MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α– PU.1 pathway. Nat. Med., 2011; 17: 64-70
- Ponomarev E.D., Veremeyko T., Weiner H.L.: MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 2013; 61: 91-103
- Yang Y., Ye Y., Kong C., Su X., Zhang X., Bai W., He X.: MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem. Res., 2019; 44: 811-828
- Hu L., Chen Z., Li L., Jiang Z., Zhu L.: Resveratrol decreases CD45+CD206− subtype macrophages in LPS-induced murine acute lung injury by SOCS3 signalling pathway. J. Cell. Mol. Med., 2019; 23: 8101-8113
- Imler T.J.Jr., Petro T.M.: Decreased severity of experimental autoimmune encephalomyelitis during resveratrol administration is associated with increased IL-17+IL-10+ T cells, CD4- IFN-γ+ cells, and decreased macrophage IL-6 expression. Int. Immunopharmacol., 2009; 9: 134-143
- Lühder F., Lee D.H., Gold R., Stegbauer J., Linker R.A.: Small but powerful: Short peptide hormones and their role in autoimmune inflammation. J. Neuroimmunol., 2009; 217: 1-7
- Yang Q., Zheng C., Cao J., Cao G., Shou P., Lin L., Velletri T., Jiang M., Chen Q., Han Y. i wsp.: Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ., 2016; 23: 1850-1861
- Zhang Z., Zhang Z.Y., Wu Y., Schluesener H.J.: Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats. Neuroscience, 2012; 221: 140-150
- Liu C.Y., Guo S.D., Yu J.Z., Li Y.H., Zhang H., Feng L., Chai Z., Yuan H.J., Yang W.F., Feng Q.J. i wsp.: Fasudil mediates cell therapy of EAE by immunomodulating encephalomyelitic T cells and macrophages. Eur. J. Immunol., 2015; 45: 142-152
- Bhasin M., Wu M., Tsirka S.E.: Modulation of microglial/macrophage activation by macrophage inhibitory factor (TKP) or tuftsin (TKPR) attenuates the disease course of experimental autoimmune encephalomyelitis. BMC Immunol., 2007; 8: 10
- Nissen J.C., Selwood D.L., Tsirka S.E.: Tuftsin signals through its receptor neuropilin-1 via the transforming growth factor beta pathway. J. Neurochem., 2013; 127: 394-402