Zimmermann M., Zimmermann-Kogadeeva M., Wegmann R., Goodman A.L.: Mapping human microbiome drug metabolism by gut bacteria and their genes. Nature, 2019; 570: 462-467
Franzosa E.A., Huang K., Meadow J.F., Gevers D., Lemon K.P., Bohannan B.J., Huttenhower C.: Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA, 2015; 112: E2930-E2938
Crovesy L., Masterson D., Rosado E.L.: Profile of the gut microbiota of adults with obesity: A systematic review. Eur. J. Clin. Nutr., 2020; 74, 1251-1262
Claesson M.J., Jeffery I.B., Conde S., Power S.E., O’Connor E.M., Cusack S., Harris H.M., Coakley M., Lakshminarayanan B., O’Sullivan O. i wsp.: Gut microbiota composition correlates with diet and health in the elderly. Nature, 2012; 488: 178-184
Clark R.I. Walker D.W.: Role of gut microbiota in aging-related health decline: Insights from invertebrate models. Cell Mol. Life Sci., 2018; 75: 93-101
Clarke G., O’Mahony S.M., Dinan T.G., Cryan J.F.: Priming for health: Gut microbiota acquired in early life regulates physiology, brain and behaviour. Acta Paediatr., 2014; 103: 812-819
Dogra S., Sakwinska O., Soh S.E., Ngom-Bru C., Brück W.M., Berger B., Brüssow H., Lee Y.S., Yap F., Chong Y.S. i wsp.: Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. mBio, 2015; 6: e02419-14
Brinkworth G.D., Noakes M., Clifton P.M., Bird A.R.: Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. Br. J. Nutr., 2009; 101: 14931502
Ticinesi A., Milani C., Lauretani F., Nouvenne A., Mancabelli L., Lugli G.A., Turroni F., Duranti S., Mangifesta M., Viappiani A. i wsp.: Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci. Rep., 2017; 7: 11102
Stokholm J., Thorsen J., Blaser M.J., Rasmussen M.A., Hjelmsø M., Shah S., Christensen E.D., Chawes B.L., Bønnelykke K., Brix S. i wsp.: Delivery mode and gut microbial changes correlate with an increased risk of childhood asthma. Sci. Transl. Med., 2020; 12: eaax9929
Cheng Y., Jin U.H., Allred C.D., Jayaraman A., Chapkin R.S., Safe S.: Aryl hydrocarbon receptor activity of tryptophan metabolites in young adult mouse colonocytes. Drug Metab. Dispos., 2015; 43: 1536-1543
Maranduba C.M., De Castro S.B., de Souza G.T., Rossato C., da Guia F.C., Valente M.A., Rettore J.V., Maranduba C.P., de Souza C.M., do Carmo A.M. i wsp.: Intestinal microbiota as modulators of the immune system and neuroimmune system: Impact on the host health and homeostasis. J. Immunol. Res., 2015; 2015: 931574
Baothman O.A., Zamzami M.A., Taher I., Abubaker J., Abu-Farha M.: The role of gut microbiota in the development of obesity and diabetes. Lipids Health Dis., 2016; 15: 108
Dahmus J.D., Kotler D.L., Kastenberg D.M., Kistler C.A.: The gut microbiome and colorectal cancer: A review of bacterial pathogenesis. J. Gastrointest. Oncol., 2018; 9: 769-777
Kaur H., Das C., Mande S.S.: In silico analysis of putrefaction pathways in bacteria and its implication in colorectal cancer. Front. Microbiol., 2017; 8: 2166
Hughes R., Magee E.A., Bingham S.: Protein degradation in the large intestine: Relevance to colorectal cancer. Curr. Issues Intest. Microbiol., 2000; 1: 51-58
Shen W., Gaskins H.R., McIntosh M.K.: Influence of dietary fat on intestinal microbes, inflammation, barrier function and metabolic outcomes. J. Nutr. Biochem., 2014; 25: 270-280
Nakamura J., Kubota Y., Miyaoka M., Saitoh T., Mizuno F, Benno Y.: Comparison of four microbial enzymes in Clostridia and Bacteroides isolated from human feces. Microbiol. Immunol., 2002; 46: 487-490
Pollet R.M., D’Agostino E.H., Walton W.G., Xu Y., Little M.S., Biernat K.A., Pellock S.J., Patterson L.M., Creekmore B.C., Isenberg H.N., i wsp.: An atlas of β-glucuronidases in the human intestinal microbiome. Structure, 2017; 25: 967-977
Vila A.V., Collij V., Sanna S., Sinha T., Imhann F., Bourgonje A.R., Mujagic Z., Jonkers D.M., Masclee A.A., Fu J. i wsp.: Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun., 2020; 11: 362
Finlayson-Trick E.C., Fischer J.A., Goldfarb D.M., Karakochuk C.D.: The effects of iron supplementation and fortification on the gut microbiota: A review. Gastrointest. Disord., 2020; 2: 327-340
Skonieczna-Żydecka K., Łoniewski I., Misera A., Stachowska E., Maciejewska D., Marlicz W., Galling B.: Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome. Psychopharmacology, 2019; 236: 1491-1512
Zhang S., Chen D.C.: Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J., 2019; 132: 1135-1138
Ponziani F.R., Zocco M.A., D’Aversa F., Pompili M., Gasbarrini A.: Eubiotic properties of rifaximin: Disruption of the traditional concepts in gut microbiota modulation. World J. Gastroenterol., 2017; 23: 4491-4499
Jackson M.A., Goodrich J.K., Maxan M-E., Freedberg D.E., Abrams J.A., Poole A.C., Sutter J.L., Welter D., Ley R.E., Bell J.T. i wsp.: Proton pump inhibitors alter the composition of the gut microbiota. Gut, 2016; 65: 749-756
Forslund K., Hildebrand F., Nielsen T., Falony G., Le Chatelier E., Sunagawa S., Prifti E., Vieira-Silva S., Gudmundsdottir V., Krogh Pedersen H. i wsp.: Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015; 528: 262-266
Wu H., Esteve E., Tremaroli V., Khan M.T., Caesar R., Mannerås-Holm L., Ståhlman M., Olsson L.M., Serino M., Planas- Fèlix M. i wsp.: Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med., 2017; 23: 850-858
Vieira-Silva S., Falony G., Belda E., Nielsen T., Aron-Wisnewsky J., Chakaroun R., Forslund S., Assmann K., Valles-Colomer M., Nguyen T.T. i wsp.: Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020; 581: 310-315
Noh K., Kang Y.R., Nepal M.R., Shakya R., Kang M.J., Kang W., Lee S., Jeong H.G., Jeong T.C.: Impact of gut microbiota on drug metabolism: An update for safe and effective use of drugs. Arch. Pharm. Res., 2017; 40: 1345-1355
Lauschke V.M., Ingelman-Sundberg M.: Prediction of drug response and adverse drug reactions: From twin studies to Next Generation Sequencing. Eur. J. Pharm. Sci., 2019; 130: 65-77
Sharma A., Buschmann M.M., Gilbert J.A.: Pharmacomicrobiomics: The holy grail to variability in drug response? Clin. Pharmacol. Ther., 2019; 106: 317-328
Routy B., Le Chatelier E., Derosa L., Duong C.P., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P. i wsp.: Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018; 359: 91-97
Jin U.H., Lee S.O., Sridharan G., Lee K., Davidson L.A., Jayaraman A., Chapkin R.S., Alaniz R., Safe S.: Microbiome-derived tryptophan metabolites and their aryl hydrocarbon receptor-dependent agonist and antagonist activities. Mol. Pharmacol., 2014; 85: 777-788
Venkatesh M., Mukherjee S., Wang H., Li H., Sun K., Benechet A.P., Qiu Z., Maher L., Redinbo M.R., Phillips R.S. i wsp.: Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity, 2014; 41: 296-310
Wallace B.D., Redinbo M.R.: Xenobiotic-sensing nuclear receptors involved in drug metabolism: A structural perspective. Drug Metab. Rev., 2013; 45: 79-100
Lee S.H., An J.H., Lee H.J., Jung B.H.: Evaluation of pharmacokinetic differences of acetaminophen in pseudo germ-free rats. Biopharm. Drug Dispos., 2012; 33: 292-303
Possamai L.A., McPhail M.J., Khamri W., Wu B., Concas D., Harrison M., Williams R., Cox R.D., Cox I.J., Anstee Q.M., Thursz M.R.: The role of intestinal microbiota in murine models of acetaminophen-induced hepatotoxicity. Liver Int., 2015; 35: 764-773
Sousa T., Yadav V., Zann V., Borde A., Abrahamsson B., Basit A.W.: On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid. J. Pharm. Sci., 2014; 103: 3171-3175
Yoo D.H., Kim I.S., Van Le T.K., Jung I.H., Yoo H.H., Kim D.H.: Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos., 2014; 42: 1508-1513
Viaud S., Flament C., Zoubir M., Pautier P., LeCesne A., Ribrag V., Soria J.C., Marty V., Vielh P., Robert C. i wsp.: Cyclophosphamide induces differentiation of Th17 cells in cancer patients. Cancer Res. 2011; 71: 661-665
Saitta K.S., Zhang C., Lee K.K., Fujimoto K., Redinbo M.R., Boelsterli U.A.: Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: Mode of action and pharmacokinetics. Xenobiotica, 2014; 44: 28-35
Choi M.S., Yu J.S., Yoo H.H., Kim D.H.: The role of gut microbiota in the pharmacokinetics of antihypertensive drugs. Pharmacol. Res., 2018; 130: 164-171
Haiser H.J., Gootenberg D.B., Chatman K., Sirasani G., Balskus E.P., Turnbaugh P.J.: Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. Science, 2013; 341: 295-298
Kumar K., Jaiswal S.K., Dhoke G.V., Srivastava G.N., Sharma A.K., Sharma V.K.: Mechanistic and structural insight into promiscuity based metabolism of cardiac drug digoxin by gut microbial enzyme. J. Cell. Biochem., 2018; 119: 5287-5296
Hashim H., Azmin S., Razlan H., Yahya N.W., Tan H.J., Manaf M.R., Ibrahim N.M.: Eradication of Helicobacter pylori infection improves levodopa action, clinical symptoms and quality of life in patients with Parkinson’s disease. PLoS One, 2014; 9: e112330
Matuskova Z., Anzenbacher P., Vecera R., Siller M., TlaskalovaHogenova H., Strojil J., Anzenbacherova E.: Effect of Lactobacillus casei on the pharmacokinetics of amiodarone in male Wistar rats. Eur. J. Drug Metab. Pharmacokinet., 2017; 42: 29-36
Nakayama H., Kinouchi T., Kataoka K., Akimoto S., Matsuda Y., Ohnishi Y.: Intestinal anaerobic bacteria hydrolyse sorivudine, producing the high blood concentration of 5-(E)-(2-bromovinyl)uracil that increases the level and toxicity of 5-fluorouracil. Pharmacogenetics, 1997; 7: 35-43
Okuda H., Ogura K., Kato A., Takubo H., Watabe T.: A possible mechanism of eighteen patient deaths caused by interactions of sorivudine, a new antiviral drug, with oral 5-fluorouracil prodrugs. J. Pharmacol. Exp. Ther., 1998; 287: 791-799
Poteres E., Hubert N., Poludasu S., Brigando G., Moore J., Keeler K., Isabelli A., Ibay I.C., Alt L., Pytynia M. i wsp.: Selective regional alteration of the gut microbiota by diet and antibiotics. Front. Physiol., 2020; 11: 797
Stojančević M., Bojić G., Salami H.A., Mikov M.: The influence of intestinal tract and probiotics on the fate of orally administered drugs. Curr. Issues Mol. Biol., 2014; 16: 55-68
Zeevi D., Korem T., Zmora N., Israeli D., Rothschild D., Weinberger A., Ben-Yacov O., Lador D., Avnit-Sagi T., Lotan-Pompan M. i wsp.: Personalized nutrition by prediction of glycemic responses. Cell, 2015; 163: 1079-1094
Wallace B.D., Roberts A.B., Pollet R.M., Ingle J.D., Biernat K.A., Pellock S.J., Venkatesh M.K., Guthrie L., O’Neal S.K., Robinson S.J. i wsp.: Structure and inhibition of microbiome β-glucuronidases essential to the alleviation of cancer drug toxicity. Chem. Biol., 2015; 22: 1238-1249