Have a personal or library account? Click to login

Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies

Open Access
|Dec 2021

References

  1. Aubin H.J., Reimer J., Nutt D.J., Bladström A., Torup L., François C., Chick J.: Clinical relevance of as needed treatment with na-lmefene in alcohol-dependent patients. Eur. Addict. Res., 2015; 21: 160–168
  2. Xuan Z., Naimi T.S., Kaplan M.S., Bagge C.L., Few L.R., Maisto S., Saitz R., Freeman R.: Alcohol policies and suicide: A review of the literature. Alcohol Clin. Exp. Res., 2016; 40: 2,043–2,055
  3. Alasmari F., Goodwani S., McCullumsmith R.E., Sari Y.: Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog. Neurobiol., 2018; 171: 32–49
  4. Anderson R.I., Becker H.C., Adams B.L., Jesudason C.D., Rorick-Kehn L.M.: Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front. Neurosci., 2014; 8: 33
  5. Imperato A., Di Chiara G.: Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J. Pharmacol. Exp. Ther., 1986; 239: 219–228
  6. Korotkova T.M., Sergeeva O.A., Eriksson K.S., Haas H.L., Brown R.E.: Excitation of ventral tegmental area dopaminergic and non-dopaminergic neurons by orexins/hypocretins. J. Neurosci., 2003; 23: 7–11
  7. Patyal R., Woo E.Y., Borgland S.L.: Local hypocretin-1 modulates terminal dopamine concentration in the nucleus accumbens shell. Front. Behav. Neurosci., 2012; 6: 82
  8. Vena A.A., Gonzales R.A.: Temporal profiles dissociate regional extracellular ethanol versus dopamine concentrations. ACS Chem. Neurosci., 2015; 6: 37–47
  9. Schier C.J., Dilly G.A., Gonzales R.A.: Intravenous ethanol increases extracellular dopamine in the medial prefrontal cortex of the Long-Evans rat. Alcohol Clin. Exp. Res., 2013; 37: 740–747
  10. Adinoff B.: Neurobiologic processes in drug reward and addiction. Harv. Rev. Psychiatry., 2004; 12: 305–320
  11. Samson H.H., Pfeffer A.O., Tolliver G.A.: Oral ethanol self-administration in rats: Models of alcohol-seeking behavior. Alcohol. Clin. Exp. Res., 1988; 12: 591–598
  12. Samson H.H., Tolliver G.A., Pfeffer A.O., Sadeghi K, Haraguchi M.: Relation of ethanol self-administration to feeding and drinking in a nonrestricted access situation in rats initiated to self-administer ethanol using the sucrose-fading technique, Alcohol, 1988; 5: 375–385
  13. Volkow N.D., Michaelides M., Baler R.: The neuroscience of drug reward and addiction. Physiol. Rev., 2019; 99: 2,115–2,140
  14. Mitchell J.M., O’Neil J.P., Janabi M., Marks S.M., Jagust W.J., Fields H.L.: Alcohol consumption induces endogenous opioid release in the human orbitofrontal cortex and nucleus accumbens. Sci. Transl. Med., 2012; 4: 116ra6
  15. Addolorato G., Leggio L., Abenavoli L., Gasbarrini G., Alcoholism Treatment Study Group: Neurobiochemical and clinical aspects of craving in alcohol addiction: A review. Addict. Behav., 2005; 30: 1,209–1,224
  16. Koob G.F., Volkow N.D.: Neurobiology of addiction: A neurocircuitry analysis. Lancet Psychiatry, 2016; 3: 760–773
  17. Weiss F., Porrino L.J.: Behavioral neurobiology of alcohol addiction: Recent advances and challenges. J. Neurosci. 2002; 22: 3,332–3,337
  18. Barson J.R., Leibowitz S.F.: Orexin/hypocretin system: Role in food and drug overconsumption. Int. Rev. Neurobiol., 2017; 136: 199–237
  19. Holmqvist T., Akerman K.E., Kukkonen J.P.: High specificity of human orexin receptors for orexins over neuropeptide Y and other neuropeptides. Neurosci Lett., 2001; 305: 177–180
  20. James M.H., Mahler S.V., Moorman D.E., Aston-Jones G.: A decade of orexin/hypocretin and addiction: Where are we now? Curr. Top. Behav. Neurosci., 2017; 33: 247–281
  21. Leonard C.S., Kukkonen J.P.: Orexin/hypocretin receptor signalling: A functional perspective. Br. J. Pharmacol., 2014; 171: 294–313
  22. de Lecea L., Kilduff T.S., Peyron C., Gao X., Foye P.E., Danielson P.E., Fukuhara C., Battenberg E.L., Gautvik V.T., Bartlett F.S. 2nd, et al.: The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA, 1998; 95: 322–327
  23. Sakurai T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R.M., Tanaka H., Williams S.C., Richardson J.A., Kozlowski G.P., Wilson S., et al.: Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell, 1998; 92: 573–585
  24. Scammell T.E., Winrow C.J.: Orexin receptors: Pharmacology and therapeutic opportunities. Annu. Rev. Pharmacol. Toxicol., 2011; 51: 243–266
  25. Sakurai T.: The role of orexin in motivated behaviours. Nature Rev. Neurosci., 2014; 15: 719–731
  26. Marcus J.N., Aschkenasi C.J., Lee C.E., Chemelli R.M., Saper C.B., Yanagisawa M., Elmquist J.K.: Differential expression of orexin receptors 1 and 2 in the rat brain. J. Comp. Neurol., 2001; 435: 6–25
  27. Magga J., Bart G., Oker-Blom C., Kukkonen J.P., Akerman K.E., Näsman J.: Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1. Biochem. Pharmacol., 2006; 71: 827–836
  28. van den Pol A.N., Gao X.B., Obrietan K., Kilduff T.S., Belousov A.B.: Presynaptic and postsynaptic actions and modulation of neuroendocrine neurons by a new hypothalamic peptide, hypocretin/ orexin. J. Neurosci., 1998; 18: 7,962–7,971
  29. Acuna-Goycolea C., van den Pol A.N.: Neuroendocrine proopiomelanocortin neurons are excited by hypocretin/orexin. J. Neurosci., 2009; 29: 1,503–1,513
  30. Huang M.C., Chen C.H., Chen L.Y., Chang H.M., Chen C.K., Lin S.K., Xu K.: Chronic ketamine abuse is associated with orexin-A reduction and ACTH elevation. Psychopharmacology, 2020; 237: 45–53
  31. Randeva H.S., Karteris E., Grammatopoulos D., Hillhouse E.W.: Expression of orexin-A and functional orexin type 2 receptors in the human adult adrenals: Implications for adrenal function and energy homeostasis. J. Clin. Endocrinol. Metab., 2001; 86: 4,808– 4,813
  32. Fujiki N., Yoshida Y., Ripley B., Honda K., Mignot E., Nishino S.: Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. Neuroreport., 2001; 12: 993–997
  33. Moriguchi T., Sakurai T., Nambu T., Yanagisawa M., Goto K.: Neurons containing orexin in the lateral hypothalamic area of the adult rat brain are activated by insulin-induced acute hypoglycemia. Neurosci. Lett., 1999; 264: 101–104
  34. Mieda M., Williams S.C., Sinton C.M., Richardson J.A., Sakurai T., Yanagisawa M.: Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci., 2004; 24: 10,493–10,501
  35. Winsky-Sommerer R., Yamanaka A., Diano S., Borok E., Roberts A.J., Sakurai T., Kilduff T.S., Horvath T.L., de Lecea L.: Interaction between the corticotropin-releasing factor system and hypocretins (orexins): A novel circuit mediating stress response. J. Neurosci., 2004; 24: 11,439–11,448
  36. Chemelli R.M., Willie J.T., Sinton C.M., Elmquist J.K., Scammell T., Lee C., Richardson J.A., Williams S.C., Xiong Y., Kisanuki Y., et al.: Narcolepsy in orexin knockout mice: Molecular genetics of sleep regulation. Cell, 1999; 98: 437–451
  37. Thiele T.E., Navarro M.: “Drinking in the dark” (DID) procedures: A model of binge-like ethanol drinking in non-dependent mice. Alcohol, 2014; 48: 235–241
  38. Leeman R.F., Heilig M., Cunningham C.L., Stephens D.N., Duka T., O’Malley S.S.: Ethanol consumption: How should we measure it? Achieving consilience between human and animal phenotypes. Addict. Biol., 2010; 15: 109–124
  39. Gauvin D.V., Moore K.R., Holloway F.A.: Do rat strain differences in ethanol consumption reflect differences in ethanol sensitivity or the preparedness to learn? Alcohol, 1993; 10: 37–43
  40. Bell R.L., Rodd Z.A., Lumeng L., Murphy J.M., McBride W.J.: The alcohol‐preferring P rat and animal models of excessive alcohol drinking. Addict. Biol., 2006; 11: 270–288
  41. Moore C.F., Lynch W.J.: Alcohol preferring (P) rats as a model for examining sex differences in alcohol use disorder and its treatment. Pharmacol. Biochem. Behav., 2015; 132: 1–9
  42. Barson J.R., Ho H.T., Leibowitz S.F.: Anterior thalamic paraventricular nucleus is involved in intermittent access ethanol drinking: Role of orexin receptor 2. Addict. Biol., 2015; 20: 469–481
  43. Richards J.K., Simms J.A., Steensland P., Taha S.A., Borgland S.L., Bonci A., Barlett S.E.: Inhibition of orexin-1/hypocretin-1 receptors inhibits yohimbine-induced reinstatement of ethanol and sucrose seeking in Long-Evans rats. Psychopharmacology, 2008; 199: 109–117
  44. Mayannavar S., Rashmi K.S., Rao Y.D., Yadav S., Ganaraja B.: Effect of orexin A antagonist (SB-334867) infusion into the nucleus accumbens on consummatory behavior and alcohol preference in Wistar rats. Indian J. Pharmacol., 2016; 48: 53–58
  45. Shoblock J.R., Welty N., Aluisio L., Fraser I., Motley S.T., Morton K., Palmer J., Bonaventure P., Carruthers N.I., Lovenberg T.W., et al.: Selective blockade of the orexin-2 receptor attenuates ethanol self-administration, place preference, and reinstatement. Psycho-pharmacology, 2011; 215: 191–203
  46. Moorman D.E., Aston-Jones G.: Orexin-1 receptor antagonism decreases ethanol consumption and preference selectively in high-ethanol-preferring Sprague-Dawley rats. Alcohol., 2009; 43: 379‐386
  47. Moorman D.E., James M.H., Kilroy E.A., Aston-Jones G.: Orexin/ hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res., 2017; 1654: 34–42
  48. Alcaraz-Iborra M., Navarrete F., Rodríguez-Ortega E., de la Fuente L., Manzanares J., Cubero I.: Different molecular/behavioral endophenotypes in C57BL/6J mice predict the impact of OX1 receptor blockade on binge-like ethanol intake. Front. Behav. Neurosci., 2017; 11: 186
  49. Lei K., Wegner S.A., Yu J.H., Hopf F.W.: Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology, 2016; 110: 431–437
  50. Lei K., Wegner S.A., Yu J.H., Mototake A., Hu B., Hopf F.W.: Nucleus accumbens shell and mPFC but not insula orexin-1 receptors promote excessive alcohol drinking. Front. Neurosci., 2016; 10: 400
  51. Olney J.J., Navarro M., Thiele T.E.: Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol. Clin. Exp Res., 2015; 39: 21–29
  52. Voorhees C.M., Cunningham C.L.: Involvement of the orexin/ hypocretin system in ethanol conditioned place preference. Psychopharmacology, 2011; 214: 805–818
  53. Lê A.D., Ko J., Chow S., Quan B.: Alcohol consumption by C57BL/6, BALB/c, and DBA/2 mice in a limited access paradigm. Pharmacol. Biochem. Behav., 1994; 47: 375–378
  54. Mendoza-Ruiz L.G., Vázquez-León P., Martínez-Mota L., Juan E.R., Miranda-Páez A.: Forced ethanol ingestion by Wistar rats from a juvenile age increased voluntary alcohol consumption in adulthood, with the involvement of orexin-A. Alcohol, 2018; 70: 73–80
  55. Olney J.J., Navarro M., Thiele T.E.: The role of orexin signaling in the ventral tegmental area and central amygdala in modulating binge-like ethanol drinking behavior. Alcohol. Clin. Exp. Res., 2017; 41: 551–561
  56. Brown R.M., Khoo S.Y., Lawrence A.J.: Central orexin (hypocretin) 2 receptor antagonism reduces ethanol self-administration, but not cue-conditioned ethanol-seeking, in ethanol-preferring rats. Int. J. Neuropsychopharm., 2013; 16: 2,067–2,079
  57. Jupp B., Krivdic B., Krstew E., Lawrence A.J.: The orexin1 receptor antagonist SB-334867 dissociates the motivational properties of alcohol and sucrose in rats. Brain Res., 2011; 1,391: 54–59
  58. Lawrence A.J., Cowen M.S., Yang H.J., Chen F., Oldfield B.: The orexin system regulates alcohol-seeking in rats. Br. J. Pharmacol., 2006; 148: 752–759
  59. Dhaher R., Hauser S.R., Getachew B., Bell R.L., McBride W.J., McKinzie D.L., Rodd Z.A.: The orexin-1 receptor antagonist SB-334867 reduces alcohol relapse drinking, but not alcohol-seeking, in alcohol-preferring (P) rats. J. Addict. Med., 2010; 4: 153–159
  60. Lopez M.F., Moorman D.E., Aston-Jones G., Becker H.C.: The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain. Res., 2016; 1,636: 74–80
  61. Brown R.M., Kim A.K., Khoo S.Y., Kim J.H., Jupp B., Lawrence A.J.: Orexin-1 receptor signalling in the prelimbic cortex and ventral tegmental area regulates cue-induced reinstatement of ethanol-seeking in iP rats. Addic. Biol., 2016; 21: 603–612
  62. Srinivasan S., Simms J.A., Nielsen C.K., Lieske S.P., Bito-Onon J.J., Yi H., Hopf F.W., Bonci A., Bartlett S.E.: The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration. PLoS One, 2012; 7: e44726
  63. Narita M., Nagumo Y., Hashimoto S., Narita M., Khotib J., Miyatake M., Sakurai T., Yanagisawa M., Nakamachi T., Shioda S., Suzuki T.: Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J. Neurosci., 2006; 26: 398-405
  64. Wang B., You Z.B., Wise R.A.: Reinstatement of cocaine seeking by hypocretin (orexin) in the ventral tegmental area: Independence from the local corticotropin-releasing factor network. Biol. Psychiatry, 2009; 65: 857–862
  65. Łupina M., Tarnowski M., Baranowska-Bosiacka I., Talarek S., Listos P., Kotlińska J., Gutowska I., Listos J.: SB-334867 (an orexin-1 receptor antagonist) effects on morphine-induced sensitization in mice - a view on receptor mechanisms. Mol. Neurobiol., 2018; 55: 8473–8485
  66. Mahler S.V., Smith R.J., Moorman D.E., Sartor G.C., Aston-Jones G.: Multiple roles for orexin/hypocretin in addiction. Prog. Brain Res., 2012; 198: 79–121
  67. Schoedel K.A., Sun H., Sellers E.M., Faulknor J., Levy-Cooperman N., Li X., Kennedy W., Cha J.H., Lewis N.M., Liu W., et al.: Assessment of the abuse potential of the orexin receptor antagonist, suvorexant, compared with zolpidem in a randomized crossover study. J. Clin. Psychopharmacol. 2016; 36: 314–323
  68. Sanchez-Alavez M., Benedict J., Wills D.N., Ehlers C.L.: Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep, 2019; 42: zsz020
  69. Terán A., Majadas S., Galan J.: Quetiapine in the treatment of sleep disturbances associated with addictive conditions: A retrospective study. Subst. Use Misuse., 2008; 43: 2,169–2,171
  70. Brower K.J., Aldrich M.S., Robinson E.A., Zucker R.A., Greden J.F.: Insomnia, self-medication, and relapse to alcoholism. Am. J. Psychiatry, 2001; 158: 399–404
  71. Wiskerke J., James M.H., Aston-Jones G.: The orexin-1 receptor antagonist SB-334867 reduces motivation, but not inhibitory control, in a rat stop signal task. Brain Res., 2020; 1,731: 146222
Language: English
Page range: 959 - 969
Submitted on: Aug 16, 2020
Accepted on: Apr 16, 2021
Published on: Dec 29, 2021
Published by: Hirszfeld Institute of Immunology and Experimental Therapy
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2021 Kamila Czora-Poczwardowska, Radosław Kujawski, Julia Słyńko-Krzyżostaniak, Przemysław Ł. Mikołajczak, Michał Szulc, published by Hirszfeld Institute of Immunology and Experimental Therapy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.