Havell E.A., Berman B., Ogburn C.A., Berg K., Paucker K., Vilcek J.: Two antigenically distinct species of human interferon. Proc. Natl. Acad. Sci. USA, 1975; 72: 2185–2187
Taniguchi T., Mantei N., Schwarzstein M., Nagata S., Muramatsu M., Weissmann C.: Human leukocyte and fibroblast interferons are structurally related. Nature, 1980; 285: 547–549
Uddin S., Majchrzak B., Woodson J., Arunkumar P., Alsayed Y., Pine R., Young P.R., Fish E.N., Platanias L.C.: Activation of the p38 mitogen-activated protein kinase by type I interferons. J. Biol. Chem., 1999; 274: 30,127–30,131
Darnell J.E. Jr., Kerr I.M., Stark G.R.: Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science, 1994; 264: 1,415–1,421
Colamonici O.R., D’alessandrot F., Diaz M.O., Gregory S.A., Neckerst L.M., Nordant R.: Characterization of three monoclonal antibodies that recognize the interferon α2 receptor. Proc. Natl. Acad. Sci. USA, 1990; 87: 7,230–7,234
Colamonici O.R., Domanski P.: Identification of a novel subunit of the type I interferon receptor localized to human chromosome 21. J. Biol. Chem., 1993; 268: 10,895–10,899
Colamonici O.R., Uyttendaelen H., Domanski P., Yan H., Krolewski J.J.: p135tyk2, an interferon-alpha-activated tyrosine kinase, is physically associated with an interferon-alpha receptor. J. Biol. Chem., 1994; 269: 3,518–3,522
Colamonici O., Yan H., Domanski P., Handa R., Smalley D., Mullersman J., Witte M., Krishnan K., Krolewski J.J.: Direct binding to and tyrosine phosphorylation of the alpha subunit of the type I interferon receptor by p135tyk2 tyrosine kinase. Mol. Cell. Biol., 1994; 14: 8,133–8,142
Domanski P., Fish E., Nadeau O.W., Witte M., Platanias L.C., Yan H., Krolewski J.J., Pitha P., Colamonici O.R.: A region of the β subunit of the interferon α receptor different from Box 1 interacts with Jak1 and is sufficient to activate the Jak-Stat pathway and induce an antiviral state. J. Biol. Chem., 1997; 272: 26,388–26,393
Yan H., Krishnan K., Greenlund A.C., Gupta S., Lim J.T., Schreiber R.D., Schindler C.W., Krolewski J.J.: Phosphorylated interferon-alpha receptor 1 subunit (IFNaR1) acts as a docking site for the latent form of the 113 kDa STAT2 protein. EMBO J., 1996; 15: 1,064–1,074
Gauzzi M.C., Velazquez L., McKendry R., Mogensen K.E., Fellous M., Pellegrini S.: Interferon-α-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem., 1996; 271: 20,494–20,500
Yang C.H., Shi W., Basu L., Murti A., Constantinescu S.N., Blatt L., Croze E., Mullersman J.E., Pfeffer L.M.: Direct association of STAT3 with the IFNAR-1 chain of the human type I interferon receptor. J. Biol. Chem., 1996; 271: 8,057–8,061
Nguyen K.B., Watford W.T., Salomon R., Hofmann S.R., Pien G.C., Morinobu A., Gadina M., O’Shea J.J., Biron C.A.: Critical role for STAT4 activation by type 1 interferons in the interferon-γ response to viral infection. Science, 2002; 297: 2,063–2,066
Meinke A., Barahmand-Pour F., Wöhrl S., Stoiber D., Decker T.: Activation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol. Cell. Biol., 1996; 16: 6,937–6,944
Gupta S., Jiang M., Pernis A.B.: IFN-α activates Stat6 and leads to the formation of Stat2:Stat6 complexes in B cells. J. Immunol., 1999; 163: 3,834–3,841
Uddin S., Lekmine F., Sharma N., Majchrzak B., Mayer I., Young P.R., Bokoch G.M., Fish E.N., Platanias L.C.: The Rac1/p38 mitogen-activated protein kinase pathway is required for interferon α-dependent transcriptional activation but not serine phosphorylation of Stat proteins. J. Biol. Chem., 2000; 275: 27,634–27,640
Milne D.M., Campbell D.G., Caudwell F.B., Meek D.W.: Phosphorylation of the tumor suppressor protein p53 by mitogen-activated protein kinases. J. Biol. Chem. 1994; 269: 9,253–9,260
Hervas-Stubbs S., Perez-Gracia J.L., Rouzaut A., Sanmamed M.F., Le Bon A., Melero I.: Direct effects of type I interferons on cells of the immune system. Clin. Cancer Res., 2011; 17: 2,619– 2,627
Uddin S., Yenush L., Sun X.J., Sweet M.E., White M.F., Platanias L.C.: Interferon-α engages the insulin receptor substrate-1 to associate with the phosphatidylinositol 3’-kinase. J. Biol. Chem., 1995; 270: 15,938–15,941
Pfeffer L.M., Mullersman J.E., Pfeffer S.R., Murti A., Shi W., Yang C.H.: STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science, 1997; 276: 1,418–1,420
Kaur S., Sassano A., Dolniak B., Joshi S., Majchrzak-Kita B., Baker D.P., Hay N., Fish E.N., Platanias L.C.: Role of the Akt pathway in mRNA translation of interferon-stimulated genes. Proc. Natl. Acad. Sci. USA, 2008; 105: 4,808–4,813
Yang C.H., Murti A., Pfeffer S.R., Basu L., Kim J.G., Pfeffer L.M.: IFN α/β promotes cell survival by activating NF-κB. Proc. Natl. Acad. Sci. USA, 2000; 97: 13,631–13,636
Lekmine F., Uddin S., Sassano A., Parmar S., Brachmann S.M., Majchrzak B., Sonenberg N., Hay N., Fish E.N., Platanias L.C.: Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type I interferons. J. Biol. Chem., 2003; 278: 27,772–27,780
Bramanti P., Sessa E., Rifici C., D’Aleo G., Floridia D., Di Bella P., Lublin F.: Enhanced spasticity in primary progressive MS patients treated with interferon beta-1b. Neurology, 1998; 51: 1,720–1,723
Bach M.A., Phan-Dinh-Tuy F., Tournier E., Chatenoud L., Bach J.F., Martin C., Degos J.D.: Deficit of suppressor T cells in active multiple sclerosis. Lancet, 1980; 2: 1,221–1,223
Booss J., Esiri M.M., Tourtellotte W.W., Mason D.Y.: Immunohistological analysis of T lymphocyte subsets in the central nervous system in chronic progressive multiple sclerosis. J. Neurol. Sci., 1983; 62: 219–232
Rose L.M., Ginsberg A.H., Rothstein T.L., Ledbetter J.A., Clark E.A.: Selective loss of a subset of T helper cells in active multiple sclerosis. Proc. Natl. Acad. Sci. USA, 1985; 82: 7,389–7,393
Esiri M.M.: Multiple sclerosis: A quantitative and qualitative study of immunoglobulin‐containing cells in the central nervous system. Neuropathol. Appl. Neurobiol., 1980; 6: 9–21
Ohguro H., Chiba S., Igarashi Y., Matsumoto H., Akino T., Palczewski K.: Beta-arrestin and arrestin are recognized by autoantibodies in sera from multiple sclerosis patients. Proc. Natl. Acad. Sci. USA, 1993; 90: 3,241–3,245
Shi Y., Feng Y., Kang J., Liu C., Li Z., Li D., Cao W., Qiu J., Guo Z., Bi E., et al.: Critical regulation of CD4+ T cell survival and autoimmunity by β-arrestin 1. Nat. Immunol., 2007; 8: 817–824
McMichael A.J., Hall A.J.: Does immunosuppressive ultraviolet radiation explain the latitude gradient for multiple sclerosis? Epidemiology, 1997; 8: 642–645
Hartung H.P., Consette R., König N., Kwiecinski H., Guseo A., Morrissey S.P., Krapf H., Zwingers T., Mitoxantrone in Multiple Sclerosis Study Group (MIMS): Mitoxantrone in progressive multiple sclerosis: A placebo-controlled, double-blind, randomised, multicentre trial. Lancet, 2002; 360: 2,018–2,025
Polman C.H., O’Connor P.W., Havrdova E., Hutchinson M., Kappos L., Miller D.H., Phillips J.T., Lublin F.D., Giovannoni G., Wajgt A., et al.: A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med., 2006; 354: 899–910
Kappos L., Radue E.W., O’Connor P., Polman C., Hohlfeld R., Calabresi P., Selmaj K., Agoropoulou C., Leyk M., Zhang-Auberson L., et al.: A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med., 2010; 362: 387–401
Gyódi E., Benczur M., Pálffy G., Tálas M., Petrányi G., Földes I., Hollán S.R.: Association between HLA B7, DR2 and dysfunction of natural and antibody-mediated cytotoxicity without connection with the deficient interferon production in multiple sclerosis. Hum. Immunol., 1982; 4: 209–217
Haahr S., Møller-Larsen A., Pedersen E.: Immunological parameters in multiple sclerosis patients with special reference to the herpes virus group. Clin. Exp. Immunol., 1983; 51: 197–206
Maruo Y.: Interferon production and natural killer activity of peripheral blood lymphocytes obtained from patients with multiple sclerosis. Hokkaido Igaku Zasshi, 1988; 63: 521–533
Feng X., Petraglia A.L., Chen M., Byskosh P.V., Boos M.D., Reder A.T.: Low expression of interferon-stimulated genes in active multiple sclerosis is linked to subnormal phosphorylation of STAT1. J. Neuroimmunol., 2002; 129: 205–215
Mosmann T.R., Cherwinski H., Bond M.W., Giedlin M.A., Coffman R.L.: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol., 1986; 136: 2,348–2,357
Selmaj K., Raine C.S., Cannella B., Brosnan C.F.: Identification of lymphotoxin and tumor necrosis factor in multiple sclerosis lesions. J. Clin. Invest., 1991; 87: 949–954
Hojati Z., Kay M., Dehghanian F.: Chapter 15—Mechanism of action of interferon beta in treatment of multiple sclerosis. In: Multiple Sclerosis: A Mechanistic View, eds.: A. Minagar. Academic Press, Cambridge (MA) 2016, 365–392
Wilson N.J., Boniface K., Chan J.R., McKenzie B.S., Blumenschein W.M., Mattson J.D., Basham B., Smith K., Chen T., Morel F., et al.: Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat. Immunol., 2007; 8: 950–957
Matusevicius D., Kivisäkk P., He B., Kostulas N., Õzenci V., Fredrikson S., Link H.: Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult. Scler., 1999; 5: 101–104
Lock C., Hermans G., Pedotti R., Brendolan A., Schadt E., Garren H., Langer-Gould A., Strober S., Cannella B., Allard J., et al.: Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med., 2002; 8: 500–508
Komiyama Y., Nakae S., Matsuki T., Nambu A., Ishigame H., Kakuta S., Sudo K., Iwakura Y.: IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol., 2006; 177: 566–573
Yen J.H., Kong W., Ganea D.: IFN-β inhibits dendritic cell migration through STAT-1-mediated transcriptional suppression of CCR7 and matrix metalloproteinase 9. J. Immunol., 2010; 184: 3,478–3,486
Bolton S.J., Anthony D.C., Perry V.H.: Loss of the tight junction proteins occludin and zonula occludens-1 from cerebral vascular endothelium during neutrophil-induced blood-brain barrier breakdown in vivo. Neuroscience, 1998; 86: 1,245–1,257
Wolburg H., Wolburg-Buchholz K., Kraus J., Rascher-Eggstein G., Liebner S., Hamm S., Duffner F., Grote E.H., Risau W., Engelhardt B.: Localization of claudin-3 in tight junctions of the blood-brain barrier is selectively lost during experimental autoimmune encephalomyelitis and human glioblastoma multiforme. Acta Neuropathol., 2003; 105: 586–592
Stone A.L., Frank J.A., Albert P.S., Bash C., Smith M.E., Maloni H., McFarland H.F.: The effect of interferon-β on blood-brain barrier disruptions demonstrated by contrast-enhanced magnetic resonance imaging in relapsing-remitting multiple sclerosis. Ann. Neurol., 1995; 37: 611–619
The IFNB Multiple Sclerosis Study Group: Interferon beta-1b is effective in relapsing-remitting multiple sclerosis. I. Clinical results of a multicenter, randomized, double-blind, placebo-controlled trial. Neurology, 1993; 43: 655–661
Paty D.W., Li D.K.: Interferon beta-lb is effective in relapsing-remitting multiple sclerosis: II MRI analysis results of a multicenter, randomized, double-blind, placebo-controlled trial. UBC MS/MRI Study Group and the IFNB Multiple Sclerosis Study Group. Neurology, 1993; 43: 662–667
The IFNB Multiple Sclerosis Study Group and the University of British Columbia MS/MRI Analysis Group: Interferon beta-1b in the treatment of multiple sclerosis: Final outcome of the randomized controlled trial. The IFNB Multiple Sclerosis Study Group and The University of British Columbia MS/MRI Analysis Group. Neurology, 1995; 45: 1,277–1,285
Jacobs L.D., Cookfair D.L., Rudic R.A., Herndon R.M., Richerf J.R., Salazar A.M., Fischef J.S., Goodkin D.E., Grangef C.V., Simon J.H., et al.: A phase III trial of intramuscular recombinant interferon beta as treatment for exacerbating-remitting multiple sclerosis: Design and conduct of study and baseline characteristics of patients. Multiple Sclerosis Collaborative Research Group (MSCRG). Mult. Scler., 1995; 1: 118–135
Li D.K., Paty D.W., UBC MS/MRI Analysis Research Group, PRISMS Study Group: Magnetic resonance imaging results of the PRISMS trial: A randomized, double-blind, placebo-controlled study of interferon-beta1a in relapsing-remitting multiple sclerosis. Prevention of relapses and disability by interferon-β1a subcutaneously in multiple sclerosis. Ann. Neurol., 1999; 46: 197–206
Simon J.H., Jacobs L.D., Campion M., Wende K., Simonian N., Cookfair D.L., Rudick R.A., Herndon R.M., Richert J.R., Salazar A.M., et al.: Magnetic resonance studies of intramuscular interferon β-1a for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. Ann. Neurol., 1996; 43: 79–87
Liu C., Blumhardt L.D.: Randomised, double blind, placebo controlled study of interferon β-1a in relapsing-remitting multiple sclerosis analysed by area under disability/time curves. J. Neurol. Neurosurg. Psychiatry, 1999; 67: 451–456
Ebers G.C., PRISMS (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group: Randomized double-blind placebo-controlled study of interferon β-1a in relapsing/remitting multiple sclerosis. Lancet, 1998; 352: 1,498–1,504
Kaiser L., Fritz R.S., Straus S.E., Gubareva L., Hayden F.G.: Symptom pathogenesis during acute influenza: Interleukin-6 and other cytokine responses. J. Med. Virol., 2001; 64: 262–268
Grakoui A., Wychowski C., Lin C., Feinstone S.M., Rice C.M.: Expression and identification of hepatitis C virus polyprotein cleavage products. J. Virol., 1993; 67: 1,385–1,395
Lanford R.E., Guerra B., Lee H., Averett D.R., Pfeiffer B., Chavez D., Notvall L., Bigger C.: Antiviral effect and virus-host interactions in response to alpha interferon, gamma interferon, poly(i)-poly(c), tumor necrosis factor alpha, and ribavirin in hepatitis C virus sub-genomic replicons. J. Virol., 2003; 77: 1,092–1,104
Ji X., Cheung R., Cooper S., Li Q., Greenberg H.B., He X.S.: Interferon alfa regulated gene expression in patients initiating interferon treatment for chronic hepatitis C. Hepatology, 2003; 37: 610–621
Wang C., Pflugheber J., Sumpter R.Jr., Sodora D.L., Hui D., Sen G.C., Gale M.Jr: Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J. Virol., 2003; 77: 3,898–3,912
Schvarcz R., Weiland O., Wejstål R., Norkrans G., Frydén A., Foberg U.: A randomized controlled open study of interferon alpha-2b treatment of chronic non-A, non-B posttransfusion hepatitis: No correlation of outcome to presence of hepatitis C virus antibodies. Scand. J. Infect. Dis., 1989; 21: 617–625
Brillanti S., Garson J., Foli M., Whitby K., Deaville R., Masci C., Miglioli M., Barbara L.: A pilot study of combination therapy with ribavirin plus interferon alfa for interferon alfa-resistant chronic hepatitis C. Gastroenterology, 1994; 107: 812–817
Glue P., Rouzier-Panis R., Raffanel C., Sabo R., Gupta S.K., Salfi M., Jacobs S., Clement R.P.: A dose-ranging study of pegylated interferon alfa-2b and ribavirin in chronic hepatitis C. The Hepatitis C Intervention Therapy Group. Hepatology, 2000; 32: 647–653
Maughan A., Ogbuagu O.: Pegylated interferon alpha 2a for the treatment of hepatitis C virus infection. Expert Opin. Drug Metab. Toxicol., 2018; 14: 219–227
Reichenberg A., Gorman J.M., Dieterich D.T.: Interferon-induced depression and cognitive impairment in hepatitis C virus patients: A 72 week prospective study. AIDS, 2005; 19: S174–S178
Zornitzki T., Malnick S., Lysyy L., Knobler H.: Interferon therapy in hepatitis C leading to chronic type 1 diabetes. World J. Gastroenterol., 2015; 21: 233–239