References
- Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., & Aziz, M. (2021). Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods, 10(5). https://doi.org/10.3390/foods10051006.
- Bassey, E. J., Cheng, J. H., & Sun, D. W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137–148. https://doi.org/10.1016/J.TIFS.2021.03.045.
- Bhattacharjee, S., Mohanty, P., Sahu, J. K., & Sahu, J. N. (2024). A critical review on drying of food materials: Recent progress and key challenges. International Communications in Heat and Mass Transfer, 158, 107863. https://doi.org/10.1016/J.ICHEATMASSTRANSFER.2024.107863.
- Bhattacharya, M., Srivastav, P. P., & Mishra, H. N. (2015). Thin-layer modeling of convective and microwave-convective drying of oyster mushroom (Pleurotus ostreatus). Journal of Food Science and Technology, 52(4), 2013–2022. https://doi.org/10.1007/s13197-013-1209-2.
- Cao, Y., Tao, Y., Zhu, X., Han, Y., Li, D., Liu, C., Liao, X., & Show, P. L. (2020). Effect of microwave and air-borne ultrasound-assisted air drying on drying kinetics and phytochemical properties of broccoli floret. Drying Technology, 38(13), 1733–1748. https://doi.org/10.1080/07373937.2019.1662437.
- Casaverde-Pacherrez, L. A., Téllez-Pérez, C., Besombes, C., Marcelo-Aldana, D., Allaf, K., & Vásquez-Díaz, E. (2022). Effect of Swell-Drying on Mango (Mangifera indica) Drying Kinetics. Foods, 11(15). https://doi.org/10.3390/foods11152220.
- Castro, A. M., Díaz, L. E., Quintanilla-Carvajal, M. X., Mayorga, E. Y., & Moreno, F. L. (2023). Convective drying of feijoa (Acca sellowiana Berg): A study on bioactivity, quality, and drying parameters. LWT, 186. https://doi.org/10.1016/j.lwt.2023.115209.
- Chahbani, A., Fakhfakh, N., Balti, M. A., Mabrouk, M., El-Hatmi, H., Zouari, N., & Kechaou, N. (2018). Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L.). Food Bioscience, 25, 32–38. https://doi.org/10.1016/j.fbio.2018.07.004.
- Cho, J. S., Choi, J. Y., & Moon, K. D. (2020). Hyperspectral imaging technology for monitoring of moisture contents of dried persimmons during drying process. Food Science and Biotechnology, 29(10), 1407–1412. https://doi.org/10.1007/s10068-020-00791-x.
- Dehghannya, J., Aghazade-Khoie, E., Khakbaz Heshmati, M., & Ghanbarzadeh, B. (2020). Influence of Ultrasound Intensification on the Continuous and Pulsed Microwave during Convective Drying of Apple. International Journal of Fruit Science, 20(S3), S1751–S1764. https://doi.org/10.1080/15538362.2020.1830919.
- Dehghannya, J., Kadkhodaei, S., Heshmati, M. K., & Ghanbarzadeh, B. (2019). Ultrasound-assisted intensification of a hybrid intermittent microwave - hot air drying process of potato: Quality aspects and energy consumption. Ultrasonics, 96, 104–122. https://doi.org/10.1016/J.ULTRAS.2019.02.005.
- Ding, T., Li, Y., Wang, J., Song, F., Jin, G., Li, Z., Meng, X., Song, C., & Song, W. (2024). Effects of ultrasound blanching followed by hot air-coupled microwave drying on the quality of perilla leaves. Journal of Stored Products Research, 109. https://doi.org/10.1016/j.jspr.2024.102419.
- El-Mesery, H. S., Farag, H. A., Kamel, R. M., & Alshaer, W. G. (2023). Convective hot air drying of grapes: drying kinetics, mathematical modeling, energy, thermal analysis. Journal of Thermal Analysis and Calorimetry, 148(14), 6893–6908. https://doi.org/10.1007/s10973-023-12195-0.
- EL-Mesery, H. S., Kamel, R. M., & Alshaer, W. G. (2023). Enhancement of grapes convective drying by application of different airflow direction techniques. Heat and Mass Transfer/Waerme- Und Stoffuebertragung, 59(4), 699–712. https://doi.org/10.1007/s00231-022-03288-x.
- Farias, R. P., Gomez, R. S., Silva, W. P., Silva, L. P. L., Oliveira Neto, G. L., Santos, I. B., Carmo, J. E. F., Nascimento, J. J. S., & Lima, A. G. B. (2020). Heat and mass transfer, and volume variations in banana slices during convective hot air drying: An experimental analysis. Agriculture (Switzerland), 10(10), 1–14. https://doi.org/10.3390/agriculture10100423.
- Ghanbarian, D., Torki-Harchegani, M., Sadeghi, M., & Pirbalouti, A. G. (2020). Ultrasonically improved convective drying of peppermint leaves: Influence on the process time and energetic indices. Renewable Energy, 153, 67–73. https://doi.org/10.1016/j.renene.2019.10.024.
- Hasan, M. M., Uddin, M. J., & Nasrin, R. (2022). Exothermic chemical reaction of magneto-convective nanofluid flow in a square cavity. International Journal of Thermofluids, 16. https://doi.org/10.1016/j.ijft.2022.100236.
- Horuz, E., Jaafar, H. J., & Maskan, M. (2017). Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology, 35(7), 849–859. https://doi.org/10.1080/07373937.2016.1222538.
- Huang, J., Zhang, M., Mujumdar, A. S., & Li, C. (2025). AI-based processing of future prepared foods: Progress and prospects. In Food Research International (Vol. 201). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2025.115675.
- Inla, K., Bunchan, S., Krittacom, B., & Luampon, R. (2023). Drying behavior, color change and rehydration of lingzhi mushroom (Ganoderma lucidum) under convection-assisted microwave drying. Case Studies in Thermal Engineering, 49. https://doi.org/10.1016/j.csite.2023.103348
- Khmelev, V. N., Shalunov, A. V, Terent’ev, S. A., Golykh, R. N., & Nesterov, V. A. (2024). Revealing and Studying of the Mechanism of Moisture Removal from Materials on Exposure to Ultrasonic Noncontact Effect. Journal of Engineering Physics and Thermophysics, 97(4), 925–937. https://doi.org/10.1007/s10891-024-02962-7.
- Kroehnke, J., Szadzińska, J., Stasiak, M., Radziejewska-Kubzdela, E., Biegańska-Marecik, R., & Musielak, G. (2018a). Ultrasound- and microwave-assisted convective drying of carrots – Process kinetics and product’s quality analysis. Ultrasonics Sonochemistry, 48, 249–258. https://doi.org/10.1016/j.ultsonch.2018.05.040.
- Kroehnke, J., Szadzińska, J., Stasiak, M., Radziejewska-Kubzdela, E., Biegańska-Marecik, R., & Musielak, G. (2018b). Ultrasound- and microwave-assisted convective drying of carrots – Process kinetics and product’s quality analysis. Ultrasonics Sonochemistry, 48, 249–258. https://doi.org/10.1016/j.ultsonch.2018.05.040.
- Lima, R. E., Coradi, P. C., Rodrigues, D. M., Teodoro, P. E., Teodoro, L. P. R., & de Oliveira, D. P. (2024). Monitoring and predicting the quality of soybeans for different drying and storage technologies on a real scale using sensors and Machine Learning models. Journal of Stored Products Research, 108. https://doi.org/10.1016/j.jspr.2024.102386.
- Mierzwa, D., & Musielak, G. (2023). Convective–Microwave–IR Hybrid Drying of Kaolin Clay— Kinetics of Process. Applied Sciences (Switzerland), 13(13). https://doi.org/10.3390/app13137451
- Mierzwa, D., & Szadzińska, J. (2023). An Investigation of the Use of Microwaves and Airborne Ultrasound in the Convective Drying of Kale: Process Efficiency and Product Characteristics. Sustainability (Switzerland), 15(23). https://doi.org/10.3390/su152316200.
- Mkhize, X., Nkosi, N., Zondi, L., & Tumba, K. (2023). Convective drying of pumpkin: Brief literature review and new data for organically produced indigenous pumpkin (Cucurbita pepo L.) over an expanded temperature range. Journal of Agriculture and Food Research, 14. https://doi.org/10.1016/j.jafr.2023.100800.
- Muñoz-Almagro, N., Morales-Soriano, E., Villamiel, M., & Condezo-Hoyos, L. (2021). Hybrid highintensity ultrasound and microwave treatment: A review on its effect on quality and bioactivity of foods. In Ultrasonics Sonochemistry (Vol. 80). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2021.105835.
- Musielak, G., Mieszczakowska-Frąc, M., & Mierzwa, D. (2024). Convective Drying of Apple Enhanced with Microwaves and Ultrasound—Process Kinetics, Energy Consumption, and Product Quality Approach. Applied Sciences (Switzerland), 14(3). https://doi.org/10.3390/app14030994.
- Nguyen, H., Le, Q. H., Le, T. D., & Pham, V. K. (2022a). Experimental Research to Determine the Effect of Ultrasound in Drying Bo Chinh Ginseng by Ultrasound-Assisted Heat Pump Drying Method. Applied Sciences (Switzerland), 12(22). https://doi.org/10.3390/app122211525.
- Nguyen, H., Le, Q. H., Le, T. D., & Pham, V. K. (2022b). Experimental Research to Determine the Effect of Ultrasound in Drying Bo Chinh Ginseng by Ultrasound-Assisted Heat Pump Drying Method. Applied Sciences (Switzerland), 12(22). https://doi.org/10.3390/app122211525.
- Nguyen, X. Q., Le, A. D., Nguyen, N. P., & Nguyen, H. (2019). Thermal Diffusivity, Moisture Diffusivity, and Color Change of Codonopsis javanica with the Support of the Ultrasound for Drying. Journal of Food Quality, 2019. https://doi.org/10.1155/2019/2623404.
- Nowacka, M., Wiktor, A., Anuszewska, A., Dadan, M., Rybak, K., & Witrowa-Rajchert, D. (2019). The application of unconventional technologies as pulsed electric field, ultrasound and microwavevacuum drying in the production of dried cranberry snacks. Ultrasonics Sonochemistry, 56, 1–13. https://doi.org/10.1016/j.ultsonch.2019.03.023.
- Nurhaslina, C. R., Andi Bacho, S., & Mustapa, A. N. (2022). Review on drying methods for herbal plants. Materials Today: Proceedings, 63, S122–S139. https://doi.org/10.1016/j.matpr.2022.02.052
- Sadeghi, M., Mirzabeigi Kesbi, O., & Mireei, S. A. (2013). Mass transfer characteristics during convective, microwave and combined microwave-convective drying of lemon slices. Journal of the Science of Food and Agriculture, 93(3), 471–478. https://doi.org/10.1002/jsfa.5786.
- Salehi, F., Goharpour, K., & Razavi Kamran, H. (2023). Effects of ultrasound and microwave pretreatments of carrot slices before drying on the color indexes and drying rate. Ultrasonics Sonochemistry, 101. https://doi.org/10.1016/j.ultsonch.2023.106671.
- Silva Júnior, M. A. V, Leite, M. A., & Dacanal, G. C. (2023). Modelling of convective drying of potatoes polyhedrons. 19(12), 605–617. https://doi.org/doi:10.1515/ijfe-2023-0016
- Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065–1074. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.001
- Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531–539. https://doi.org/10.1016/J.ULTSONCH.2016.06.030.
- Szadzińska, J., Łechtańska, J., Pashminehazar, R., Kharaghani, A., & Tsotsas, E. (2019). Microwaveand ultrasound-assisted convective drying of raspberries: Drying kinetics and microstructural changes. Drying Technology, 37(1), 1–12. https://doi.org/10.1080/07373937.2018.1433199
- Szadzińska, J., & Mierzwa, D. (2021). The influence of hybrid drying (microwave-convective) on drying kinetics and quality of white mushrooms. Chemical Engineering and Processing - Process Intensification, 167. https://doi.org/10.1016/j.cep.2021.108532.
- Szadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R., & Kharaghani, A. (2020a). Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology, 38(1–2), 93–107. https://doi.org/10.1080/07373937.2019.1624565.
- Szadzińska, J., Mierzwa, D., Pawłowski, A., Musielak, G., Pashminehazar, R., & Kharaghani, A. (2020b). Ultrasound- and microwave-assisted intermittent drying of red beetroot. Drying Technology, 38(1–2), 93–107. https://doi.org/10.1080/07373937.2019.1624565.
- Tao, Y., Li, D., Siong Chai, W., Show, P. L., Yang, X., Manickam, S., Xie, G., & Han, Y. (2021). Comparison between airborne ultrasound and contact ultrasound to intensify air drying of blackberry: Heat and mass transfer simulation, energy consumption and quality evaluation. Ultrasonics Sonochemistry, 72. https://doi.org/10.1016/j.ultsonch.2020.105410.
- Tepe, T. K., & Tepe, F. B. (2024). Improvement of pear slices drying by pretreatments and microwaveassisted convective drying method: drying characteristics, modeling of artificial neural network, principal component analysis of quality parameters. Journal of Thermal Analysis and Calorimetry, 149(14), 7313–7328. https://doi.org/10.1007/s10973-024-13280-8.
- Tomas-Egea, J. A., Traffano-Schiffo, M. V., Castro-Giraldez, M ., & F ito, P. J. (2021). Hot air and microwave combined drying of potato monitored by infrared thermography. Applied Sciences (Switzerland), 11(4), 1–12. https://doi.org/10.3390/app11041730.
- Umaña, M., Calahorro, M., Eim, V., Rosselló, C., & Simal, S. (2022). Measurement of microstructural changes promoted by ultrasound application on plant materials with different porosity. Ultrasonics Sonochemistry, 88. https://doi.org/10.1016/j.ultsonch.2022.106087.
- Wiktor, A., & Witrowa-Rajchert, D. (2020). Drying kinetics and quality of carrots subjected to microwave- assisted drying preceded by combined pulsed electric field and ultrasound treatment. Drying Technology, 38(1–2), 176–188. https://doi.org/10.1080/07373937.2019.1642347.
- Wu, T., Duan, Z., & Wang, C. (2024). Effects of microwave drying on color change, phenolic substance content and phenolase activity of different parts of persimmon slices. Journal of Food Measurement and Characterization, 18(1), 357–369. https://doi.org/10.1007/s11694-023-02162-6.
- Van Kien, P., Tan, N. T., Nghia, P. H., & Hay, N. (2024). Heat and mass transfer in infrared assisted heat pump drying of purple yam. Agricultural Engineering, 28(1), 71-84. https://doi.org/10.2478/agriceng-2024-0006.
- Yoon, W. (2024). Special Issue on “Drying Kinetics and Quality Control in Food Processing.” Processes, 12, 1698. https://doi.org/10.3390/pr12081698.
- Yu, Y., Chen, Y., Wang, Y., Sun, X., Guo, Y., Su, D., & Xu, H. (2024). Unlocking new drying potential for Lotus root: Ultrasonic osmotic dehydration and microwave hot air drying based on phenolic retention and microstructure. Innovative Food Science and Emerging Technologies, 97. https://doi.org/10.1016/j.ifset.2024.103824.
- Zahoor, I., Mir, T. A., Ayoub, W. S., Farooq, S., & Ganaie, T. A. (2023a). Recent applications of microwave technology as novel drying of food – Review. Food and Humanity, 1, 92–103. https://doi.org/10.1016/j.foohum.2023.05.001.
- Zahoor, I., Mir, T. A., Ayoub, W. S., Farooq, S., & Ganaie, T. A. (2023b). Recent applications of microwave technology as novel drying of food – Review. Food and Humanity, 1, 92–103. https://doi.org/10.1016/J.FOOHUM.2023.05.001.
- Zang, Z., Zhang, Q., Huang, X., Jiang, C., He, C., & Wan, F. (2023). Effect of Ultrasonic Combined with Vacuum Far-infrared on the Drying Characteristics and Physicochemical Quality of Angelica sinensis. Food and Bioprocess Technology, 16(11), 2455–2470. https://doi.org/10.1007/s11947-023-03076-3.
- Żbik, K., Górska-Horczyczak, E., Onopiuk, A., Kurek, M., & Zalewska, M. (2023). Vacuum and convection drying effects on volatile compounds profile and physicochemical properties of selected herbs from Lamiaceae family. European Food Research and Technology, 249(10), 2569–2581. https://doi.org/10.1007/s00217-023-04309-7.
- Zhang, J., Li, M., Ding, Z., Wang, C., & Cheng, J. (2021). Evaluation of ultrasound-assisted microwave hot air convective drying Chinese hickory—Drying kinetics and product’s quality properties. Journal of Food Process Engineering, 44(11). https://doi.org/10.1111/jfpe.13842.
- Zhao, Y., Zheng, Y., Li, Z., Jiang, Y., Zhuang, W., Zheng, B., & Tian, Y. (2020). Effects of ultrasonic pretreatments on thermodynamic properties, water state, color kinetics, and free amino acid composition in microwave vacuum dried lotus seeds. Drying Technology, 38(4), 534–544. https://doi.org/10.1080/07373937.2019.1587618.
- Zhou, S., Chen, W., Chitrakar, B., & Fan, K. (2024). Ultrasound Technology for Enhancing Drying Efficiency and Quality of Fruits and Vegetables: A Review. In Food and Bioprocess Technology. Springer. https://doi.org/10.1007/s11947-024-03379-z.
- Zhou, S., Chen, W., & Fan, K. (2024). Recent advances in combined ultrasound and microwave treatment for improving food processing efficiency and quality: A review. Food Bioscience, 58, 103683. https://doi.org/https://doi.org/10.1016/j.fbio.2024.103683.
- Zhu, R., Ma, X., Li, D., Han, Y., Manickam, S., Jiao, Y., Flores, E. M. M., & Tao, Y. (2024). Threedimensional mass transfer modeling and phenolic chemistry exploration for ultrasound-assisted and microwave drying of goji berry. Food Research International, 193. https://doi.org/10.1016/j.foodres.2024.114826.
- Zhu, R., Shen, J., Law, C. L., Ma, X., Li, D., Han, Y., Kiani, H., Manickam, S., & Tao, Y. (2023). Combined calcium pretreatment and ultrasonic/microwave drying to dehydrate black chokeberry: Novel mass transfer modeling and metabolic pathways of polyphenols. Innovative Food Science & Emerging Technologies, 83, 103215. https://doi.org/10.1016/J.IFSET.2022.103215.