Have a personal or library account? Click to login
Investigation of the Physical Properties of Fluids for Removing Industrial Contaminants Cover

Investigation of the Physical Properties of Fluids for Removing Industrial Contaminants

Open Access
|Oct 2025

References

  1. Agüeria, D. A., Libonatti, C., & Civit, D. (2020). Cleaning and disinfection programmes in food establishments: A literature review on verification procedures. Journal of Applied Microbiology, 131. https://doi.org/10.1111/jam.14962.
  2. Avila-Sierra, A., Huellemeier, H. A., Zhang, Z. J., Heldman, D. R., & Fryer, P. J. (2021). Molecular Understanding of Fouling Induction and Removal: Effect of the Interface Temperature on Milk Deposits. ACS Applied Materials & Interfaces, 13(30), 35506-35517. https://doi.org/10.1021/acsami.1c09553.
  3. Avila-Sierra, A., Zhang, Z. J., & Fryer, P. J. (2019). Effect of surface characteristics on cleaning performance for CIP system in food processing. Energy Procedia, 161, 115-122. https://doi.org/10.1016/j.egypro.2019.02.067.
  4. Chai, J., Su, H., Li, X., Zhang, Y., Xiao, D., Kang, J., & Dong, A. (2024). Computational fluid dynamics (CFD) modeling and application for cleaning of food-contact surfaces: A review. Journal of Food Process Engineering, 47(4), e14605. https://doi.org/10.1111/jfpe.14605.
  5. Deshmukh, K. P., Arlov, D., Cant, R. S., Göransson, A., Innings, F., & Wilson, D. I. (2022). Cleaning of simple cohesive soil layers in a radial flow cell. Food and Bioproducts Processing, 136, 84-96. https://doi.org/10.1016/j.fbp.2022.09.006.
  6. Escrig, J. E., Simeone, A., Woolley, E., Rangappa, S., Rady, A., & Watson, N. J. (2020). Ultrasonic measurements and machine learning for monitoring the removal of surface fouling during clean-in-place processes. Food and Bioproducts Processing, 123, 1-13. https://doi.org/10.1016/j.fbp.2020.05.003.
  7. Fan, M., Kim, W.-J., & Heldman, D. R. (2023). Effect of temperature, wall shear stress, and NaOH concentration on cleaning effectiveness. Journal of Food Science, 88(4), 1523-1532. https://doi.org/10.1111/1750-3841.16493.
  8. Fernandes, R. R., Suleiman, N., & Wilson, D. I. (2021). In-situ measurement of the critical stress of viscoplastic soil layers. Journal of Food Engineering, 303, 110568. https://doi.org/10.1016/j.jfoodeng.2021.110568.
  9. Fryer, P. J., & Asteriadou, K. (2009). A prototype cleaning map: A classification of industrial cleaning processes. Trends in Food Science & Technology, 20(6), 255-262. https://doi.org/10.1016/j.tifs.2009.03.005.
  10. Golla, C., Boddin, L., Helbig, M., Köhler, H., Rüdiger, F., & Fröhlich, J. (2024). Investigating the cleaning mechanism of film-like soils using fully convolutional networks. Food and Bioproducts Processing, 145, 78-96. https://doi.org/10.1016/j.fbp.2024.02.008.
  11. Golla, C., Freiherr Marschall, W., Kricke, S., Rüdiger, F., Köhler, H., & Fröhlich, J. (2023). Identification of cleaning mechanism by using neural networks. Food and Bioproducts Processing, 138, 86-102. https://doi.org/10.1016/j.fbp.2023.01.005.
  12. Golla, C., Köhler, H., Fröhlich, J., & Rüdiger, F. (2024). Numerical modeling of a cohesively separating soil layer in consideration of locally varying soil distribution. Heat and Mass Transfer, 60(5), 795-806. https://doi.org/10.1007/s00231-023-03394-4.
  13. Goode, K. R., Asteriadou, K., Robbins, P. T., & Fryer, P. J. (2013). Fouling and Cleaning Studies in the Food and Beverage Industry Classified by Cleaning Type. Comprehensive Reviews in Food Science and Food Safety, 12(2), 121-143. https://doi.org/10.1111/1541-4337.12000.
  14. Hanisch, T., Joppa, M., Eisenrauch, V., Jacob, S., & Mauermann, M. (2024). Optimizing the macro-structure of 3D-printed pipe surfaces to improve cleanability. Heat and Mass Transfer, 60(5), 887-895. https://doi.org/10.1007/s00231-023-03387-3.
  15. Herrera-Márquez, O., Serrano-Haro, M., Vicaria, J. M., Jurado, E., Fraatz-Leál, A. R., Zhang, Z. J., Fryer, P. J., & Avila-Sierra, A. (2020). Cleaning maps: A multi length-scale strategy to approach the cleaning of complex food deposits. Journal of Cleaner Production, 261 , 121254. https://doi.org/10.1016/j.jclepro.2020.121254.
  16. Joppa, M., Köhler, H., Rüdiger, F., Majschak, J.-P., & Fröhlich, J. (2020). Prediction of Cleaning by Means of Computational Fluid Dynamics: Implication of the Pre‐wetting of a Swellable Soil. Heat Transfer Engineering, 41(2), 178-188. https://doi.org/10.1080/01457632.2018.1522096.
  17. Köhler, H., Liebmann, V., Golla, C., Fröhlich, J., & Rüdiger, F. (2021). Modeling and CFD-simulation of cleaning process for adhesively detaching film-like soils with respect to industrial application. Food and Bioproducts Processing, 129, 157–167. https://doi.org/10.1016/j.fbp.2021.08.002.
  18. Köhler, H., Liebmann, V., Joppa, M., Fröhlich, J., Majschak, J.-P., & Rüdiger, F. (2022). On the Concept of Computational Fluid Dynamics-Based Prediction of Cleaning for Film-Like Soils. Heat Transfer Engineering, 43(15-16), 1406-1415. https://doi.org/10.1080/01457632.2021.1974180.
  19. Köhler, H., Stoye, H., Mauermann, M., Weyrauch, T., & Majschak, J.-P. (2015). How to assess cleaning? Evaluating the cleaning performance of moving impinging jets. Food and Bioproducts Processing, 93, 327-332. https://doi.org/10.1016/j.fbp.2014.09.010.
  20. Krawczuk, A., Ogrodniczek, J., Bohata, A., Bartos, P., Olšan, P., Findura, P., Kocira, S. (2024). Physical Properties of Plant Extracts with Biostimulant Potential Produced Using Cold Plasma and Low-Pressure Microwave Discharge. Agricultural Engineering, 28(1), 2024. 277-285. https://doi.org/10.2478/agriceng-2024-0017.
  21. Kricke, S., Berger, C., Zahn, S., Köhler, H., Rohm, H., & Majschak, J.P. (2024). Influence of rheological properties and pull-off forces of native and modified starches on cleaning in plane channel flow. Heat and Mass Transfer, 60(5), 861–870. https://doi.org/10.1007/s00231-023-03397-1.
  22. Kricke, S., Böttcher, K., Zahn, S., Majschak, J.P., & Rohm, H. (2022). Effect of Physicochemical Properties of Native Starches on Cleaning in Falling Film and Plane Channel Flow Experiments. Heat Transfer Engineering, 43(15-16), 1416-1425. https://doi.org/10.1080/01457632.2021.1963559.
  23. Landel, J. R., & Wilson, D. I. (2021). The Fluid Mechanics of Cleaning and Decontamination of Surfaces. Annual Review of Fluid Mechanics, 53(1), 147-171. https://doi.org/10.1146/annurev-fluid-022820-113739.
  24. Mauermann, M., Beckmann, S., Murcek, R., & Hanisch, T. (2024). Minimizing the environmental footprint in food production: A case study on the improvement of an industrial tank cleaning process through adaptive cleaning devices. Journal of Food Process Engineering, 47(3), e14594. https://doi.org/10.1111/jfpe.14594.
  25. Palabiyik, I., Atik, D. S., Sivri, G. T., Uzun, S., Kahyaoglu, L. N., Koc, Y., Celebi, E., Calisir, K., & Boluk, E. (2022). Optimization of temperature for effective cleaning with a novel cleaning rig: Influence of soil and surface types. Food and Bioproducts Processing, 136, 36-46. https://doi.org/10.1016/j.fbp.2022.09.007.
  26. Półtorak, A., Bińkowska, W., Pogorzelski, G., Szpicer, A., Onopiuk, A., Wojtasik-Kalinowska, I. & Wierzbicka, A. (2025). Innovative Technology for the Inactivation of Allergenic Compounds on Component Surfaces of a Prototype Processing Line for the Manufacture of Products with Controlled Allergenicity. Agricultural Engineering, 29(1), 2025. 229-247. https://doi.org/10.2478/agriceng-2025-0014.
  27. Rosen, M. J., & Kunjappu, J. T. (2012). Surfactants and Interfacial Phenomena. John Wiley & Sons: New York, NY, USA.
  28. Sar, P., Ghosh, A., Scarso, A., & Saha, B. (2019). Surfactant for better tomorrow: Applied aspect of surfactant aggregates from laboratory to industry. Research on Chemical Intermediates, 45(12), 6021-6041. https://doi.org/10.1007/s11164-019-04017-6.
  29. Su, H., Chai, J., Li, X., Kong, Y., Zhang, Y., Kang, J., & Dong, A. (2024). Development and trend of dairy cleaning agents. Journal of Surfactants and Detergents, 27(4), 465-481. https://doi.org/10.1002/jsde.12768.
  30. Tripathy, D. B., Mishra, A., Clark, J., & Farmer, T. (2018). Synthesis, chemistry, physicochemical properties and industrial applications of amino acid surfactants: A review. Comptes Rendus Chimie, 21(2), 112–130. https://doi.org/10.1016/j.crci.2017.11.005.
  31. Vijayasarathi, L. N., Spies, B., Nasato, D. S., Briesen, H., & Foerst, P. (2021). Independent Variation of Reynolds Number, Wall Shear Stress and Flow Velocity for Cleaning Experiments: A Geometrically Flexible Parallel Plate Flow Cell. Processes, 9(5), 5. https://doi.org/10.3390/pr9050881.
  32. Wilson, D. I., Christie, G., Fryer, P. J., Hall, I. M., Landel, J. R., & Whitehead, K. A. (2022). Lessons to learn from roadmapping in cleaning and decontamination. Food and Bioproducts Processing, 135, 156-164. https://doi.org/10.1016/j.fbp.2022.07.011.
DOI: https://doi.org/10.2478/agriceng-2025-0015 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 249 - 261
Submitted on: Jul 1, 2025
Accepted on: Sep 1, 2025
Published on: Oct 5, 2025
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Dariusz Siłuch, Zbigniew Kobus, Anna Krawczuk, Sławomir Kocira, Monika Krzywicka, Rafał Kliza, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.