References
- Absi, N., Cattaruzza, D., Feillet, D., Ogier, M., & Semet, F. (2020). A heuristic branch-cut-and-price algorithm for the ROADEF/EURO challenge on Inventory Routing. Transportation Science, 54(2), 313-329. https://doi.org/10.1287/trsc.2019.0961.
- Alonso-Pecina, F., Hérnandez-Báez, I. Y., López-Díaz, R. E., & Cruz-Rosales, M. H. (2024). Iterated Local Search Approach to a Single-Product, Multiple-Source, Inventory-Routing Problem. Mathematics, 12(7), 991. https://doi.org/10.3390/math12070991.
- Alvarez, A., & Munari, P. (2017). An exact hybrid method for the vehicle routing problem with time windows and multiple deliverymen. Computers & Operations Research, 83, 1-12. https://doi.org/10.1016/j.cor.2017.02.001.
- Amador-Fontalvo, J. E., Paternina-Arboleda, C. D., & Montoya-Torres, J. R. (2014). Solving the heterogeneous vehicle routing problem with time windows and multiple products via a bacterial metaheuristic. International Journal of Advanced Operations Management, 6(1), 81-100. https://doi.org/10.1504/IJAOM.2014.059622.
- Baran, J. (2018). Supply chain management in agri-food processing enterprises. Journal of Modern Science, 4, 39 (4), 217-230. https://doi.org/10.13166/jms/103641.
- Cerchione, R., Singh, R., Centobelli, P., & Shabani, A. (2018). Food cold chain management: From a structured literature review to a conceptual framework and research agenda. The International Journal of Logistics Management, 29(3), 792-821. https://doi.org/10.1108/IJLM-01-2017-0007.
- Chaudhuri, A., Dukovska-Popovska, I., Subramanian, N., Chan, H. K., & Bai, R. (2018). Decisionmaking in cold chain logistics using data analytics: a literature review. The International Journal of Logistics Management, 29(3), 839-861. https://doi.org/10.1108/IJLM-03-2017-0059.
- Dzieniszewski, G., Kuboń, M., Pristavka, M., & Findura, P. (2021). Operating parameters and environmental indicators of diesel engines fed with crop-based fuels. Agricultural Engineering, 25(1), 13-28. https://doi.org/10.2478/agriceng-2021-0002.
- Kampf, R. (2018). Optimization of delivery routes using the Little´ s algorithm. NAŠE MORE: znanstveni časopis za more i pomorstvo, 65(4 Special issue), 237-239. https://doi.org/10.17818/NM/2018/4SI.13.
- Kara, B. Y., Sabuncuoglu, I., & Bidanda, B. (Eds.). (2014). Global logistics management. CRC Press. https://doi.org/10.1201/b17845.
- Labadie, N., Prins, C., & Prodhon, C. (2016). Metaheuristics for vehicle routing problems. John Wiley & Sons. https://doi.org/10.1002/9781119136767.
- Lai, D. S., Demirag, O. C., & Leung, J. M. (2016). A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph. Transportation Research Part E: Logistics and Transportation Review, 86, 32-52. https://doi.org/10.1016/j.tre.2015.12.001.
- Lairenlakpam, R., Thakre, G. D., Gupta, P., Singh, Y., & Kumar, P. (2017). Effect of different drive modes on energy consumption of an electric auto rickshaw. In 2017 IEEE Transportation Electrification Conference (ITEC-India) (pp. 1-5). IEEE. https://doi.org/10.1109/ITEC-India.2017.8333832.
- Lapinskaitė, I., & Kuckailytė, J. (2014). The impact of supply chain cost on the price of the final product. Business, Management and Education, 12(1), 109-126. https://doi.org/10.3846/bme.2014.08
- Liao, W., Liu, L., & Fu, J. (2019). A comparative study on the routing problem of electric and fuel vehicles considering carbon trading. International Journal of Environmental Research and Public Health, 16(17), 3120. https://doi.org/10.3390/ijerph16173120.
- Panggabean, E. M., Mawengkang, H., Azis, Z., & Sari, R. F. (2018). Periodic heterogeneous vehicle routing problem with driver scheduling. In IOP Conference Series: Materials Science and Engineering (Vol. 300, No. 1, p. 012017). IOP Publishing. https://doi.org/10.1088/1757-899X/300/1/012017.
- Penna, P. H. V., Subramanian, A., & Ochi, L. S. (2013). An iterated local search heuristic for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, 19(2), 201-232. https://doi.org/10.1007/s10732-011-9186-y.
- Plizga, K. (2021). Analysis of Energy Consumption by Electric Agricultural Tractor Model Under Operating Conditions. Agricultural Engineering, 25, 1-12. https://doi.org/10.2478/agriceng-2021-000
- Pop, P. C., Fuksz, L., & Marc, A. H. (2014, June). A variable neighborhood search approach for solving the generalized vehicle routing problem. In International Conference on Hybrid Artificial Intelligence Systems (pp. 13-24). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-07617-1_2.
- Przywara, A., Koszel, M., Krawczuk, A., & Sotirios Anifantis, A. (2022). The Analysis of the New Farm Tractors Market in Poland in 2010-2020 in the Context of Income Generated by Farmers’ Households. Agricultural Engineering, 26, 65-79. https://doi.org/10.2478/agriceng-2022-0006.
- Rojas-Cuevas, I. D., Caballero-Morales, S. O., Martinez-Flores, J. L., & Mendoza-Vazquez, J. R. (2018). Capacitated vehicle routing problem model for carriers. Journal of Transport and Supply Chain Management, 12(1), 1-9. https://doi.org/10.4102/jtscm.v12i0.345.
- Silva, M. M., Subramanian, A., & Ochi, L. S. (2015). An iterated local search heuristic for the split delivery vehicle routing problem. Computers & Operations Research, 53, 234-249. https://doi.org/10.1016/j.cor.2014.08.005.
- Stopka, O., Stopkova, M., & Kampf, R. (2019). Application of the operational research method to determine the optimum transport collection cycle of municipal waste in a predesignated urban area. Sustainability, 11(8), 2275. https://doi.org/10.3390/su11082275.
- Toth, P. (2002). The vehicle routing problem. SIAM Monographs on Discrete Mathematics and Applications. https://doi.org/10.1137/1.9780898718515.
- Zhou, A. H., Zhu, L. P., Hu, B., Deng, S., Song, Y., Qiu, H., & Pan, S. (2018). Traveling-salesmanproblem algorithm based on simulated annealing and gene-expression programming. Information, 10(1), 7. https://doi.org/10.3390/info10010007.