Have a personal or library account? Click to login
Smart Solutions in Agricultural Robotics Cover

References

  1. Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities/2019-2024/european-greendeal (accessed on 10 February 2024).
  2. Afonso, M., Fonteijn, H., Fiorentin, F.S., Lensink, D., Mooij, M., Faber, N., Polder, G., Wehrens, R. (2020). Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning. Frontiers in plant science, 11, 1759. https://doi.org/10.3389/fpls.2020.571299.
  3. Aggarwal, M., Khullar, V., Goyal, N., Gautam, R., Alblehai, F., Elghatwary, M., Singh, A. (2023). Federated Transfer Learning for Rice-Leaf Disease Classification across Multiclient Cross-Silo Datasets. Agronomy, 13, 2483. https://doi.org/10.3390/agronomy13102483.
  4. Analytical review of the global robotics market 2019 [Analiticheskij obzor mirovogo rynka robototehniki 2019]. Online: https://www.sberbank.ru/common/img/uploaded/pdf/sberbank_robotics_review_2019_17.07.2019_m.pdf Accessed on 13.03.2023 (accessed on 10 February 2024).
  5. Andriyanov, N. (2023). Development of Apple Detection System and Reinforcement Learning for Apple Manipulator. Electronics, 12, 727. https://doi.org/10.3390/electronics12030727.
  6. Andriyanov, N., Khasanshin, I., Utkin, D., Gataullin, T., Ignar, S., Shumaev, V., Soloviev, V. (2022). Intelligent System for Estimation of the Spatial Position of Apples Based on YOLOv3 and Real Sense Depth Camera D415. Symmetry, 14, 148. https://doi.org/10.3390/sym14010148
  7. Assunção, E., Gaspar, P.D., Alibabaei, K., Simões, M.P., Proença, H., Soares, V.N.G.J., Caldeira, J.M.L.P. (2022). Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application. Future Internet, 14, 323. https://doi.org/10.3390/fi14110323
  8. Avgoustaki, D.D., Avgoustakis, I., Miralles, C.C., Sohn, J., Xydis, G. (2022). Autonomous Mobile Robot with Attached Multispectral Camera to Monitor the Development of Crops and Detect Nutrient and Water Deficiencies in Vertical Farms. Agronomy, 12, 2691. https://doi.org/10.3390/agronomy12112691.
  9. Bao, X., Niu, Y., Li, Y., Mao, J., Li, S., Ma, X., Yin, Q., Chen, B. (2022). Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards. Applied Sciences, 12, 9379. https://doi.org/10.3390/app12189379.
  10. Bausewein, M., Mansfeld, R., Doherr, M.G., Harms, J., Sorge, U.S. (2022). Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals, 12, 2131. https://doi.org/10.3390/ani12162131.
  11. Bi, C., Hu, N., Zou, Y., Zhang, S., Xu, S., Yu, H. (2022). Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy, 12, 1843. https://doi.org/10.3390/agronomy12081843.
  12. Bist, R.B., Subedi, S., Yang, X., Chai, L. (2023). A Novel YOLOv6 Object Detector for Monitoring Piling Behavior of Cage-Free Laying Hens. AgriEngineering, 5, 905-923. https://doi.org/10.3390/agriengineering5020056
  13. Chang, C.-L., Xie, B.-X., Wang, C.-H. (2020). Visual Guidance and Egg Collection Scheme for a Smart Poultry Robot for Free-Range Farms. Sensors, 20, 6624. https://doi.org/10.3390/s20226624.
  14. Chen, C.-H., Wu, Y.-C., Zhang, J.-X., Chen, Y.-H. (2022). IoT-Based Fish Farm Water Quality Monitoring System. Sensors, 22, 6700. https://doi.org/10.3390/s22176700.
  15. Dac, H.H., Gonzalez Viejo, C., Lipovetzky, N., Tongson, E., Dunshea, F.R., Fuentes, S. (2022). Livestock Identification Using Deep Learning for Traceability. Sensors, 22, 8256. https://doi.org/10.3390/s22218256.
  16. Džermeikaitė, K., Bačėninaitė, D., Antanaitis, R. (2023). Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals, 13, 780. https://doi.org/10.3390/ani13050780.
  17. Emmi, L., Fernández, R., Gonzalez-de-Santos, P., Francia, M., Golfarelli, M., Vitali, G., Sandmann, H., Hustedt, M., Wollweber, M. (2023). Exploiting the Internet Resources for Autonomous Robots in Agriculture. Agriculture, 13, 1005. https://doi.org/agriculture13051005.
  18. Fonteijn, H., Afonso, M., Lensink, D., Mooij, M., Faber, N., Vroegop, A., Polder, G., Wehrens, R. (2021). Automatic Phenotyping of Tomatoes in Production Greenhouses Using Robotics and Computer Vision: From Theory to Practice. Agronomy, 11, 1599. https://doi.org/10.3390/agronomy11081599.
  19. Fukada, K., Hara, K., Cai, J., Teruya, D., Shimizu, I., Kuriyama, T., Koga, K., Sakamoto, K., Nakamura, Y., Nakajo, H. (2023). An Automatic Tomato Growth Analysis System Using YOLO Transfer Learning. Applied Sciences, 13, 6880. https://doi.org/10.3390/app13126880.
  20. Gálik, R., Lüttmerding, G., Boďo, Š., Knížková, I., Kunc, P. (2021). Impact of Heat Stress on Selected Parameters of Robotic Milking. Animals, 11, 3114. https://doi.org/10.3390/ani11113114.
  21. Ghosh, P.K., Sundaravadivel, P. (2023). Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications. Sensors, 23, 4039. https://doi.org/10.3390/s23084039.
  22. Hutsol, T., Kutyrev, A., Kiktev, N., Biliuk, M. (2023). Robotic Technologies in Horticulture: Analysis and Implementation Prospects. Agricultural Engineering, 27, 113-133. https://doi.org/10.2478/agriceng-2023-0009
  23. Ji, W., He, G., Xu, B., Zhang, H., Yu, X. (2024). A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture, 14, 102. https://doi.org/10.3390/agriculture14010102.
  24. Jo, J.-H., Nejad, J.G., Lee, J.-S., Lee, H.-G. (2022). Evaluation of Heat Stress Effects in Different Geographical Areas on Milk and Rumen Characteristics in Holstein Dairy Cows Using Robot Milking and Rumen Sensors: A Survey in South Korea. Animals, 12, 2398. https://doi.org/10.3390/ani12182398.
  25. Kamon, S., di Maria, E., Giannoccaro, N.I., Ishii, K. (2023). A New Reconfigurable Agricultural Vehicle Controlled by a User Graphical Interface: Mechanical and Electronic Aspects. Machines, 11, 795. https://doi.org/10.3390/machines11080795.
  26. Koval, B., Khlevna, I. (2022). Anomalies Analysis and Detection Using Computer Vision for Finding Defects in Plant Leaves Images. Selected Papers of the IX International Scientific Conference “Information Technology and Implementation” (IT&I-2022). Conference Proceedings. Kyiv, Ukraine, November 30 - December 02, 2022. CEUR Workshop Proceedings, 3347, 69–79. https://ceurws.org/Vol-3347/Paper_6.pdf.
  27. Khort, D., Kutyrev, A., Kiktev, N., Hutsol, T., Glowacki, S., Kuboń, M., Nurek, T., Rud, A., Gródek-Szostak Z. (2022). Automated mobile hot mist generator: a quest for effectiveness in fruit horticulture. Sensors, 22(9), 2643. https://doi.org/10.3390/s25092643.
  28. Kiktev, N., Didyk, A., Antonevych, M. (2020). “Simulation of Multi-Agent Architectures for Fruit and Berry Picking Robot in Active-HDL,” 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 635-640, https://doi.org/10.1109/PICST51311.2020.9467936.
  29. Kiktev, N., Kutyrev, A., Mazurchuk, P. Apple Fruits Monitoring Diseases on the Tree Crown Using a Convolutional Neural Network. CEUR Workshop, 2023, 3538, 78-88.
  30. Kitić, G., Krklješ, D., Panić, M., Petes, C., Birgermajer, S., Crnojević, V. (2022). Agrobot Lala—An Autonomous Robotic System for Real-Time, In-Field Soil Sampling, and Analysis of Nitrates. Sensors, 22, 4207. https://doi.org/10.3390/s22114207.
  31. Kutyrev, A., Kiktev, N., Jewiarz, M., Khort, D., Smirnov, I., Zubina, V., Hutsol, T., Tomasik, M., Biliuk, M. (2022). Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy. Sensors, 22, 8901. https://doi.org/10.3390/s2222890.
  32. Kutyrev, A.I., Kiktev, N.A., Smirnov, I.G. (2024). Laser Rangefinder Methods: Autonomous-Vehicle Trajectory Control in Horticultural Plantings. Sensors, 24, 982. https://doi.org/10.3390/s24030982.
  33. Kutyrev, A., Khort, D., Smirnov, I., Kiktev, N., Opryshko, O. and Komarchuk, D. (2022). Robotic Device for Identifying and Picking Apples. 2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 415-420. https://doi.org/10.1109/PICST57299.2022.10238646.
  34. Lee, J., Lim, K., Cho, J. (2022). Improved Monitoring of Wildlife Invasion through Data Augmentation by Extract–Append of a Segmented Entity. Sensors, 22, 7383. https://doi.org/10.3390/s22197383
  35. Lee, K., Choi, H., Kim, J. (2023). Development of Path Generation and Algorithm for Autonomous Combine Harvester Using Dual GPS Antenna. Sensors, 23, 4944. https://doi.org/10.3390/s23104944.
  36. Lewis, J., Lima, P.U., Basiri, M. (2023). Collaborative 3D Scene Reconstruction in Large Outdoor Environments Using a Fleet of Mobile Ground Robots. Sensors, 23, 375. https://doi.org/10.3390/s23010375.
  37. Lohar, S., Zhu, L., Young, S., Graf, P., Blanton, M. (2021). Sensing Technology Survey for Obstacle Detection in Vegetation. Future Transp, 1, 672-685. https://doi.org/10.3390/futuretransp1030036.
  38. Lysenko, V., Bolbot, I., Martynenko, O., Lendiel, T., & Nakonechna, K. (2022). Program implementation of mobile phytomonitoring work. Machinery & Energetics, 13(1), 5-10. https://doi.org/10.31548/machenergy.13(1).2022.5-10.
  39. Lysenko, V., Lendiel, T., Bolbot, I., Nakonechnyy, I. (2022). Neural Network Structures for Energyefficient Control of Energy Flows in Greenhouse Facilities, 2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 21-26. https://doi.org/10.1109/PICST57299.2022.10238512.
  40. Lysenko, V., Shvorov, S., Opryshko, O., Komarchuk, D., Lukin, V. and Pasichnyk, N. (2019). “Methodological Solutions for the IoT Concept for Biogas Production Using the Local Resource,” 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 561-566, https://doi.org/10.1109/PICST47496.2019.9061238.
  41. Matheson, C. A. (2014). inaturalist. Reference Reviews,28(8), 36-38.
  42. Mayoral Baños, J.C., From, P.J., Cielniak, G. (2023). Towards Safe Robotic Agricultural Applications: Safe Navigation System Design for a Robotic Grass-Mowing Application through the Risk Management Method. Robotics, 12, 63. https://doi.org/10.3390/robotics12030063
  43. Moreno, I.J., Ouardani, D., Chaparro-Arce, D., Cardenas, A. (2023). Real-Time Hardware-in-the-Loop Emulation of Path Tracking in Low-Cost Agricultural Robots. Vehicles, 5, 894-913. https://doi.org/10.3390/vehicles5030049.
  44. Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P. (2021). Soft Grippers for Automatic Crop Harvesting: A Review. Sensors, 21, 2689. https://doi.org/10.3390/s21082689
  45. Nesta. Available online: https://www.nesta.org.uk/blog/precision-agriculture-almost-20-increase-in-income-possible-from-smart-farming/ (accessed on 10 February 2024).
  46. Otani, T. et al. (2023). Agricultural Robot under Solar Panels for Sowing, Pruning, and Harvesting in a Synecoculture Environment. Agriculture, 13, 18. https://doi.org/10.3390/agriculture13010018
  47. Pasichnik, N., Opryshko, O., Shvorov, S., Dudnyk, А., Teplyuk, V. (2023). Remote field monitoring results feasibility assessment for energy crops yield management. Machinery & Energetics, 14(2), 46-59. https://doi.org/10.31548/machinery/2.2023.46.
  48. Pavkin, D.Y., Shilin, D.V., Nikitin, E.A., Kiryushin, I.A. (2021). Designing and Simulating the Control Process of a Feed Pusher Robot Used on a Dairy Farm. Applied Sciences, 11, 10665. https://doi.org/10.3390/app112210665.
  49. Pavlovic, D. et al. (2022). Behavioural Classification of Cattle Using Neck-Mounted Accelerometer-Equipped Collars. Sensors, 22, 2323. https://doi.org/10.3390/s22062323.
  50. «Project Activate» (2022) Online: https://ammoniaengine.org/ (accessed on 5 February 2024).
  51. Qu, J., Li, H., Zhang, Z., Xi, X., Zhang, R., Guo, K. (2022). Performance Analysis and Optimization for Steering Motion Mode Switching of an Agricultural Four-Wheel-Steering Mobile Robot. Agronomy, 12, 2655. https://doi.org/10.3390/agronomy12112655.
  52. Recommendations for spraying technology of field crops (2025). Website of the company Syngenta - Kazakhstan. https://www.syngenta.kz/rekomendacii-po-tehnologii-opryskivaniya-polevyh-kultur (accessed on 2 May 2025).(In Russian).
  53. Riego del Castillo, V., Sánchez-González, L., Campazas-Vega, A., Strisciuglio, N. (2022). Vision- Based Module for Herding with a Sheepdog Robot. Sensors, 22, 5321. https://doi.org/10.3390/s22145321.
  54. Roshanianfard, A., Noguchi, N., Ardabili, S., Mako, C., Mosavi, A. (2022). Autonomous Robotic System for Pumpkin Harvesting. Agronomy, 12, 1594. https://doi.org/10.3390/agronomy12071594.
  55. Rossum, G.V. Python Software Foundation. Python Language Reference, Version 3.7. 1995. Available online: http://www.python.org (accessed on 10 February 2024).
  56. Salfer, J. A., Minegishi, K., Lazarus, W., Berning, E., & Endres, M. I. (2017). Finances and returns for robotic dairies. Journal of Dairy Science, 100(9), 7739-7749. https://doi.org/10.3390/agronomy13020380.
  57. Shurygin, B., Smirnov, I., Chilikin, A., Khort, D., Kutyrev, A., Zhukovskaya, S., Solovchenko, A. (2022). Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages. Horticulturae, 8, 1111. https://doi.org/10.3390/horticulturae8121111.
  58. Shi, J., Bai, Y., Zhou, J., Zhang, B. (2023). Multi-Crop Navigation Line Extraction Based on Improved YOLO-v8 and Threshold-DBSCAN under Complex Agricultural Environments. Agriculture, 14, 45. https://doi.org/10.3390/agriculture14010045.
  59. Skvortsov, E.A. Improving the Efficiency of Robotization of Agriculture [Povyshenie Jeffektivnosti Robotizacii Sel’skogo Hozjajstva]. Ph.D. Thesis, Federal State Budgetary Educational Institution of Higher Education “Ural State Agrarian University”, Yekaterinburg, Russia, 2017; p.182. (In Russian).
  60. Stenius, I. et al. (2022). A System for Autonomous Seaweed Farm Inspection with an Underwater Robot. Sensors, 22, 5064. https://doi.org/10.3390/s22135064.
  61. Sun, Y., Wang, W., Xu, M., Huang, L., Shi, K., Zou, C., Chen, B. (2023). Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm. Sensors, 23, 8260. https://doi.org/10.3390/s23198260.
  62. Thorvald platform (2025). https://sagarobotics.com/thorvald-platform/ (accessed on 2 May 2025).
  63. Thomas, L.-F., Änäkkälä, M., Lajunen, A. (2023). Weakly Supervised Perennial Weed Detection in a Barley Field. Remote Sens, 15, 2877. https://doi.org/10.3390/rs15112877.
  64. Thomopoulos, V., Bitas, D., Papastavros, K.-N., Tsipianitis, D., Kavga, A. (2021). Development of an Integrated IoT-Based Greenhouse Control Three-Device Robotic System. Agronomy, 11, 405. https://doi.org/10.3390/agronomy11020405.
  65. Wang, C., Ding, F., Ling, L., Li, S. (2023). Design of a Teat Cup Attachment Robot for Automatic Milking Systems. Agriculture, 13, 1273. https://doi.org/10.3390/agriculture13061273.
  66. Wutke, M., Heinrich, F., Das, P.P., Lange, A., Gentz, M., Traulsen, I., Warns, F.K., Schmitt, A.O., Gültas, M. (2021). Detecting Animal Contacts–A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts. Sensors, 21, 7512. https://doi.org/10.3390/s21227512.
  67. Yang, W., Gong, C., Luo, X., Zhong, Y., Cui, E., Hu, J., Song, S., Xie, H., Chen, W. (2023). Robotic Path Planning for Rice Seeding in Hilly Terraced Fields. Agronomy, 13, 380.
  68. Yu, H., Che, M., Yu, H., Zhang, J. (2022). Development of Weed Detection Method in Soybean Fields Utilizing Improved DeepLabv3+ Platform. Agronomy, 12, 2889. https://doi.org/10.3390/agronomy12112889.
  69. Yurochka, S.S., Dovlatov, I.M., Pavkin, D.Y., Panchenko, V.A., Smirnov, A.A., Proshkin, Y.A., Yudaev, I. (2023). Technology of Automatic Evaluation of Dairy Herd Fatness. Agriculture, 13, 1363. https://doi.org/10.3390/agriculture13071363.
  70. Zheng, S., He, M., Jia, X., Zheng, Z., Wu, X., Weng, W. (2023). Study on Mechanical Properties of Tomatoes for the End-Effector Design of the Harvesting Robot. Agriculture, 13, 2201. https://doi.org/10.3390/agriculture13122201.
DOI: https://doi.org/10.2478/agriceng-2025-0010 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 157 - 186
Submitted on: Jan 1, 2025
Accepted on: May 1, 2025
Published on: Jun 19, 2025
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Nikolay Kiktev, Oksana Vasylenko, Iryna Horetska, Anatolii Panchenko, Sergii Slobodian, Maciej Kuboń, Zbigniew Skibko, Taras Hutsol, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.