References
- Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities/2019-2024/european-greendeal (accessed on 10 February 2024).
- Afonso, M., Fonteijn, H., Fiorentin, F.S., Lensink, D., Mooij, M., Faber, N., Polder, G., Wehrens, R. (2020). Tomato Fruit Detection and Counting in Greenhouses Using Deep Learning. Frontiers in plant science, 11, 1759. https://doi.org/10.3389/fpls.2020.571299.
- Aggarwal, M., Khullar, V., Goyal, N., Gautam, R., Alblehai, F., Elghatwary, M., Singh, A. (2023). Federated Transfer Learning for Rice-Leaf Disease Classification across Multiclient Cross-Silo Datasets. Agronomy, 13, 2483. https://doi.org/10.3390/agronomy13102483.
- Analytical review of the global robotics market 2019 [Analiticheskij obzor mirovogo rynka robototehniki 2019]. Online: https://www.sberbank.ru/common/img/uploaded/pdf/sberbank_robotics_review_2019_17.07.2019_m.pdf Accessed on 13.03.2023 (accessed on 10 February 2024).
- Andriyanov, N. (2023). Development of Apple Detection System and Reinforcement Learning for Apple Manipulator. Electronics, 12, 727. https://doi.org/10.3390/electronics12030727.
- Andriyanov, N., Khasanshin, I., Utkin, D., Gataullin, T., Ignar, S., Shumaev, V., Soloviev, V. (2022). Intelligent System for Estimation of the Spatial Position of Apples Based on YOLOv3 and Real Sense Depth Camera D415. Symmetry, 14, 148. https://doi.org/10.3390/sym14010148
- Assunção, E., Gaspar, P.D., Alibabaei, K., Simões, M.P., Proença, H., Soares, V.N.G.J., Caldeira, J.M.L.P. (2022). Real-Time Image Detection for Edge Devices: A Peach Fruit Detection Application. Future Internet, 14, 323. https://doi.org/10.3390/fi14110323
- Avgoustaki, D.D., Avgoustakis, I., Miralles, C.C., Sohn, J., Xydis, G. (2022). Autonomous Mobile Robot with Attached Multispectral Camera to Monitor the Development of Crops and Detect Nutrient and Water Deficiencies in Vertical Farms. Agronomy, 12, 2691. https://doi.org/10.3390/agronomy12112691.
- Bao, X., Niu, Y., Li, Y., Mao, J., Li, S., Ma, X., Yin, Q., Chen, B. (2022). Design and Kinematic Analysis of Cable-Driven Target Spray Robot for Citrus Orchards. Applied Sciences, 12, 9379. https://doi.org/10.3390/app12189379.
- Bausewein, M., Mansfeld, R., Doherr, M.G., Harms, J., Sorge, U.S. (2022). Sensitivity and Specificity for the Detection of Clinical Mastitis by Automatic Milking Systems in Bavarian Dairy Herds. Animals, 12, 2131. https://doi.org/10.3390/ani12162131.
- Bi, C., Hu, N., Zou, Y., Zhang, S., Xu, S., Yu, H. (2022). Development of Deep Learning Methodology for Maize Seed Variety Recognition Based on Improved Swin Transformer. Agronomy, 12, 1843. https://doi.org/10.3390/agronomy12081843.
- Bist, R.B., Subedi, S., Yang, X., Chai, L. (2023). A Novel YOLOv6 Object Detector for Monitoring Piling Behavior of Cage-Free Laying Hens. AgriEngineering, 5, 905-923. https://doi.org/10.3390/agriengineering5020056
- Chang, C.-L., Xie, B.-X., Wang, C.-H. (2020). Visual Guidance and Egg Collection Scheme for a Smart Poultry Robot for Free-Range Farms. Sensors, 20, 6624. https://doi.org/10.3390/s20226624.
- Chen, C.-H., Wu, Y.-C., Zhang, J.-X., Chen, Y.-H. (2022). IoT-Based Fish Farm Water Quality Monitoring System. Sensors, 22, 6700. https://doi.org/10.3390/s22176700.
- Dac, H.H., Gonzalez Viejo, C., Lipovetzky, N., Tongson, E., Dunshea, F.R., Fuentes, S. (2022). Livestock Identification Using Deep Learning for Traceability. Sensors, 22, 8256. https://doi.org/10.3390/s22218256.
- Džermeikaitė, K., Bačėninaitė, D., Antanaitis, R. (2023). Innovations in Cattle Farming: Application of Innovative Technologies and Sensors in the Diagnosis of Diseases. Animals, 13, 780. https://doi.org/10.3390/ani13050780.
- Emmi, L., Fernández, R., Gonzalez-de-Santos, P., Francia, M., Golfarelli, M., Vitali, G., Sandmann, H., Hustedt, M., Wollweber, M. (2023). Exploiting the Internet Resources for Autonomous Robots in Agriculture. Agriculture, 13, 1005. https://doi.org/agriculture13051005.
- Fonteijn, H., Afonso, M., Lensink, D., Mooij, M., Faber, N., Vroegop, A., Polder, G., Wehrens, R. (2021). Automatic Phenotyping of Tomatoes in Production Greenhouses Using Robotics and Computer Vision: From Theory to Practice. Agronomy, 11, 1599. https://doi.org/10.3390/agronomy11081599.
- Fukada, K., Hara, K., Cai, J., Teruya, D., Shimizu, I., Kuriyama, T., Koga, K., Sakamoto, K., Nakamura, Y., Nakajo, H. (2023). An Automatic Tomato Growth Analysis System Using YOLO Transfer Learning. Applied Sciences, 13, 6880. https://doi.org/10.3390/app13126880.
- Gálik, R., Lüttmerding, G., Boďo, Š., Knížková, I., Kunc, P. (2021). Impact of Heat Stress on Selected Parameters of Robotic Milking. Animals, 11, 3114. https://doi.org/10.3390/ani11113114.
- Ghosh, P.K., Sundaravadivel, P. (2023). Stretchable Sensors for Soft Robotic Grippers in Edge-Intelligent IoT Applications. Sensors, 23, 4039. https://doi.org/10.3390/s23084039.
- Hutsol, T., Kutyrev, A., Kiktev, N., Biliuk, M. (2023). Robotic Technologies in Horticulture: Analysis and Implementation Prospects. Agricultural Engineering, 27, 113-133. https://doi.org/10.2478/agriceng-2023-0009
- Ji, W., He, G., Xu, B., Zhang, H., Yu, X. (2024). A New Picking Pattern of a Flexible Three-Fingered End-Effector for Apple Harvesting Robot. Agriculture, 14, 102. https://doi.org/10.3390/agriculture14010102.
- Jo, J.-H., Nejad, J.G., Lee, J.-S., Lee, H.-G. (2022). Evaluation of Heat Stress Effects in Different Geographical Areas on Milk and Rumen Characteristics in Holstein Dairy Cows Using Robot Milking and Rumen Sensors: A Survey in South Korea. Animals, 12, 2398. https://doi.org/10.3390/ani12182398.
- Kamon, S., di Maria, E., Giannoccaro, N.I., Ishii, K. (2023). A New Reconfigurable Agricultural Vehicle Controlled by a User Graphical Interface: Mechanical and Electronic Aspects. Machines, 11, 795. https://doi.org/10.3390/machines11080795.
- Koval, B., Khlevna, I. (2022). Anomalies Analysis and Detection Using Computer Vision for Finding Defects in Plant Leaves Images. Selected Papers of the IX International Scientific Conference “Information Technology and Implementation” (IT&I-2022). Conference Proceedings. Kyiv, Ukraine, November 30 - December 02, 2022. CEUR Workshop Proceedings, 3347, 69–79. https://ceurws.org/Vol-3347/Paper_6.pdf.
- Khort, D., Kutyrev, A., Kiktev, N., Hutsol, T., Glowacki, S., Kuboń, M., Nurek, T., Rud, A., Gródek-Szostak Z. (2022). Automated mobile hot mist generator: a quest for effectiveness in fruit horticulture. Sensors, 22(9), 2643. https://doi.org/10.3390/s25092643.
- Kiktev, N., Didyk, A., Antonevych, M. (2020). “Simulation of Multi-Agent Architectures for Fruit and Berry Picking Robot in Active-HDL,” 2020 IEEE International Conference on Problems of Infocommunications. Science and Technology (PIC S&T), Kharkiv, Ukraine, 635-640, https://doi.org/10.1109/PICST51311.2020.9467936.
- Kiktev, N., Kutyrev, A., Mazurchuk, P. Apple Fruits Monitoring Diseases on the Tree Crown Using a Convolutional Neural Network. CEUR Workshop, 2023, 3538, 78-88.
- Kitić, G., Krklješ, D., Panić, M., Petes, C., Birgermajer, S., Crnojević, V. (2022). Agrobot Lala—An Autonomous Robotic System for Real-Time, In-Field Soil Sampling, and Analysis of Nitrates. Sensors, 22, 4207. https://doi.org/10.3390/s22114207.
- Kutyrev, A., Kiktev, N., Jewiarz, M., Khort, D., Smirnov, I., Zubina, V., Hutsol, T., Tomasik, M., Biliuk, M. (2022). Robotic Platform for Horticulture: Assessment Methodology and Increasing the Level of Autonomy. Sensors, 22, 8901. https://doi.org/10.3390/s2222890.
- Kutyrev, A.I., Kiktev, N.A., Smirnov, I.G. (2024). Laser Rangefinder Methods: Autonomous-Vehicle Trajectory Control in Horticultural Plantings. Sensors, 24, 982. https://doi.org/10.3390/s24030982.
- Kutyrev, A., Khort, D., Smirnov, I., Kiktev, N., Opryshko, O. and Komarchuk, D. (2022). Robotic Device for Identifying and Picking Apples. 2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 415-420. https://doi.org/10.1109/PICST57299.2022.10238646.
- Lee, J., Lim, K., Cho, J. (2022). Improved Monitoring of Wildlife Invasion through Data Augmentation by Extract–Append of a Segmented Entity. Sensors, 22, 7383. https://doi.org/10.3390/s22197383
- Lee, K., Choi, H., Kim, J. (2023). Development of Path Generation and Algorithm for Autonomous Combine Harvester Using Dual GPS Antenna. Sensors, 23, 4944. https://doi.org/10.3390/s23104944.
- Lewis, J., Lima, P.U., Basiri, M. (2023). Collaborative 3D Scene Reconstruction in Large Outdoor Environments Using a Fleet of Mobile Ground Robots. Sensors, 23, 375. https://doi.org/10.3390/s23010375.
- Lohar, S., Zhu, L., Young, S., Graf, P., Blanton, M. (2021). Sensing Technology Survey for Obstacle Detection in Vegetation. Future Transp, 1, 672-685. https://doi.org/10.3390/futuretransp1030036.
- Lysenko, V., Bolbot, I., Martynenko, O., Lendiel, T., & Nakonechna, K. (2022). Program implementation of mobile phytomonitoring work. Machinery & Energetics, 13(1), 5-10. https://doi.org/10.31548/machenergy.13(1).2022.5-10.
- Lysenko, V., Lendiel, T., Bolbot, I., Nakonechnyy, I. (2022). Neural Network Structures for Energyefficient Control of Energy Flows in Greenhouse Facilities, 2022 IEEE 9th International Conference on Problems of Infocommunications, Science and Technology (PIC S&T), Kharkiv, Ukraine, 21-26. https://doi.org/10.1109/PICST57299.2022.10238512.
- Lysenko, V., Shvorov, S., Opryshko, O., Komarchuk, D., Lukin, V. and Pasichnyk, N. (2019). “Methodological Solutions for the IoT Concept for Biogas Production Using the Local Resource,” 2019 IEEE International Scientific-Practical Conference Problems of Infocommunications, Science and Technology (PIC S&T), Kyiv, Ukraine, 561-566, https://doi.org/10.1109/PICST47496.2019.9061238.
- Matheson, C. A. (2014). inaturalist. Reference Reviews,28(8), 36-38.
- Mayoral Baños, J.C., From, P.J., Cielniak, G. (2023). Towards Safe Robotic Agricultural Applications: Safe Navigation System Design for a Robotic Grass-Mowing Application through the Risk Management Method. Robotics, 12, 63. https://doi.org/10.3390/robotics12030063
- Moreno, I.J., Ouardani, D., Chaparro-Arce, D., Cardenas, A. (2023). Real-Time Hardware-in-the-Loop Emulation of Path Tracking in Low-Cost Agricultural Robots. Vehicles, 5, 894-913. https://doi.org/10.3390/vehicles5030049.
- Navas, E., Fernández, R., Sepúlveda, D., Armada, M., Gonzalez-de-Santos, P. (2021). Soft Grippers for Automatic Crop Harvesting: A Review. Sensors, 21, 2689. https://doi.org/10.3390/s21082689
- Nesta. Available online: https://www.nesta.org.uk/blog/precision-agriculture-almost-20-increase-in-income-possible-from-smart-farming/ (accessed on 10 February 2024).
- Otani, T. et al. (2023). Agricultural Robot under Solar Panels for Sowing, Pruning, and Harvesting in a Synecoculture Environment. Agriculture, 13, 18. https://doi.org/10.3390/agriculture13010018
- Pasichnik, N., Opryshko, O., Shvorov, S., Dudnyk, А., Teplyuk, V. (2023). Remote field monitoring results feasibility assessment for energy crops yield management. Machinery & Energetics, 14(2), 46-59. https://doi.org/10.31548/machinery/2.2023.46.
- Pavkin, D.Y., Shilin, D.V., Nikitin, E.A., Kiryushin, I.A. (2021). Designing and Simulating the Control Process of a Feed Pusher Robot Used on a Dairy Farm. Applied Sciences, 11, 10665. https://doi.org/10.3390/app112210665.
- Pavlovic, D. et al. (2022). Behavioural Classification of Cattle Using Neck-Mounted Accelerometer-Equipped Collars. Sensors, 22, 2323. https://doi.org/10.3390/s22062323.
- «Project Activate» (2022) Online: https://ammoniaengine.org/ (accessed on 5 February 2024).
- Qu, J., Li, H., Zhang, Z., Xi, X., Zhang, R., Guo, K. (2022). Performance Analysis and Optimization for Steering Motion Mode Switching of an Agricultural Four-Wheel-Steering Mobile Robot. Agronomy, 12, 2655. https://doi.org/10.3390/agronomy12112655.
- Recommendations for spraying technology of field crops (2025). Website of the company Syngenta - Kazakhstan. https://www.syngenta.kz/rekomendacii-po-tehnologii-opryskivaniya-polevyh-kultur (accessed on 2 May 2025).(In Russian).
- Riego del Castillo, V., Sánchez-González, L., Campazas-Vega, A., Strisciuglio, N. (2022). Vision- Based Module for Herding with a Sheepdog Robot. Sensors, 22, 5321. https://doi.org/10.3390/s22145321.
- Roshanianfard, A., Noguchi, N., Ardabili, S., Mako, C., Mosavi, A. (2022). Autonomous Robotic System for Pumpkin Harvesting. Agronomy, 12, 1594. https://doi.org/10.3390/agronomy12071594.
- Rossum, G.V. Python Software Foundation. Python Language Reference, Version 3.7. 1995. Available online: http://www.python.org (accessed on 10 February 2024).
- Salfer, J. A., Minegishi, K., Lazarus, W., Berning, E., & Endres, M. I. (2017). Finances and returns for robotic dairies. Journal of Dairy Science, 100(9), 7739-7749. https://doi.org/10.3390/agronomy13020380.
- Shurygin, B., Smirnov, I., Chilikin, A., Khort, D., Kutyrev, A., Zhukovskaya, S., Solovchenko, A. (2022). Mutual Augmentation of Spectral Sensing and Machine Learning for Non-Invasive Detection of Apple Fruit Damages. Horticulturae, 8, 1111. https://doi.org/10.3390/horticulturae8121111.
- Shi, J., Bai, Y., Zhou, J., Zhang, B. (2023). Multi-Crop Navigation Line Extraction Based on Improved YOLO-v8 and Threshold-DBSCAN under Complex Agricultural Environments. Agriculture, 14, 45. https://doi.org/10.3390/agriculture14010045.
- Skvortsov, E.A. Improving the Efficiency of Robotization of Agriculture [Povyshenie Jeffektivnosti Robotizacii Sel’skogo Hozjajstva]. Ph.D. Thesis, Federal State Budgetary Educational Institution of Higher Education “Ural State Agrarian University”, Yekaterinburg, Russia, 2017; p.182. (In Russian).
- Stenius, I. et al. (2022). A System for Autonomous Seaweed Farm Inspection with an Underwater Robot. Sensors, 22, 5064. https://doi.org/10.3390/s22135064.
- Sun, Y., Wang, W., Xu, M., Huang, L., Shi, K., Zou, C., Chen, B. (2023). Local Path Planning for Mobile Robots Based on Fuzzy Dynamic Window Algorithm. Sensors, 23, 8260. https://doi.org/10.3390/s23198260.
- Thorvald platform (2025). https://sagarobotics.com/thorvald-platform/ (accessed on 2 May 2025).
- Thomas, L.-F., Änäkkälä, M., Lajunen, A. (2023). Weakly Supervised Perennial Weed Detection in a Barley Field. Remote Sens, 15, 2877. https://doi.org/10.3390/rs15112877.
- Thomopoulos, V., Bitas, D., Papastavros, K.-N., Tsipianitis, D., Kavga, A. (2021). Development of an Integrated IoT-Based Greenhouse Control Three-Device Robotic System. Agronomy, 11, 405. https://doi.org/10.3390/agronomy11020405.
- Wang, C., Ding, F., Ling, L., Li, S. (2023). Design of a Teat Cup Attachment Robot for Automatic Milking Systems. Agriculture, 13, 1273. https://doi.org/10.3390/agriculture13061273.
- Wutke, M., Heinrich, F., Das, P.P., Lange, A., Gentz, M., Traulsen, I., Warns, F.K., Schmitt, A.O., Gültas, M. (2021). Detecting Animal Contacts–A Deep Learning-Based Pig Detection and Tracking Approach for the Quantification of Social Contacts. Sensors, 21, 7512. https://doi.org/10.3390/s21227512.
- Yang, W., Gong, C., Luo, X., Zhong, Y., Cui, E., Hu, J., Song, S., Xie, H., Chen, W. (2023). Robotic Path Planning for Rice Seeding in Hilly Terraced Fields. Agronomy, 13, 380.
- Yu, H., Che, M., Yu, H., Zhang, J. (2022). Development of Weed Detection Method in Soybean Fields Utilizing Improved DeepLabv3+ Platform. Agronomy, 12, 2889. https://doi.org/10.3390/agronomy12112889.
- Yurochka, S.S., Dovlatov, I.M., Pavkin, D.Y., Panchenko, V.A., Smirnov, A.A., Proshkin, Y.A., Yudaev, I. (2023). Technology of Automatic Evaluation of Dairy Herd Fatness. Agriculture, 13, 1363. https://doi.org/10.3390/agriculture13071363.
- Zheng, S., He, M., Jia, X., Zheng, Z., Wu, X., Weng, W. (2023). Study on Mechanical Properties of Tomatoes for the End-Effector Design of the Harvesting Robot. Agriculture, 13, 2201. https://doi.org/10.3390/agriculture13122201.