References
- Agrawal, A., Chaudhari, P. K., & Ghosh, P. (2023). Anaerobic digestion of fruit and vegetable waste: a critical review of associated challenges. Environmental Science and Pollution Research, 30(10), 24987-25012. https://doi.org/10.1007/s11356-022-21643-7.
- Agrawal, A. V., Chaudhari, P. K., & Ghosh, P. (2024). Effect of mixing ratio on biomethane potential of anaerobic co-digestion of fruit and vegetable waste and food waste. Biomass Conversion and Biorefinery, 14(14), 16149-16158. https://doi.org/https://doi.org/10.1007/s13399-023-03737-5.
- Ajayi-Banji, A., Sunoj, S., Igathinathane, C., & Rahman, S. (2021). Kinetic studies of alkalinepretreated corn stover co-digested with upset dairy manure under solid-state. Renewable Energy, 163, 2198-2207. https://doi.org/https://doi.org/10.1016/j.renene.2020.10.110.
- Akinbami, O. M., Oke, S. R., & Bodunrin, M. O. (2021). The state of renewable energy development in South Africa: An overview. Alexandria Engineering Journal, 60(6), 5077-5093. https://doi.org/https://doi.org/10.1016/j.aej.2021.03.065.
- Al-Rubaye, H., Karambelkar, S., Shivashankaraiah, M. M., & Smith, J. D. (2019). Process simulation of two-stage anaerobic digestion for methane production. Biofuels, 10(2), 181-191. https://doi.org/https://doi.org/10.1080/17597269.2017.1309854.
- Alimohammadi, M., Saeedi, Z., Akbarpour, B., Rasoulzadeh, H., Yetilmezsoy, K., Al-Ghouti, M. A., Khraisheh, M., & McKay, G. (2017). Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water, Air, & Soil Pollution, 228(11), 429. https://doi.org/10.1007/s11270-017-3607-y.
- Almeida, P., Rodrigues, R., Gaspar, M., Braga, M., & Quina, M. (2021). Integrated management of residues from tomato production: Recovery of value-added compounds and biogas production in the biorefinery context. Journal of Environmental Management, 299, 113505. https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113505.
- APHA. (2012). Standard Methods for the Examination of Water and Wastewater.
- Avinash, L. S., & Mishra, A. (2024). Comparative evaluation of Artificial intelligence based models and kinetic studies in the prediction of biogas from anaerobic digestion of MSW. Fuel, 367, 131545. https://doi.org/https://doi.org/10.1016/j.fuel.2024.131545.
- Aworanti, O. A., Agbede, O. O., Agarry, S. E., Ajani, A. O., Ogunkunle, O., Laseinde, O. T., Rahman, S. M. A., & Fattah, I. M. R. (2023). Decoding Anaerobic Digestion: A Holistic Analysis of Biomass Waste Technology, Process Kinetics, and Operational Variables. Energies, 16(8), 3378. https://www.mdpi.com/1996-1073/16/8/3378.
- Bong, C. P. C., Lim, L. Y., Lee, C. T., Klemeš, J. J., Ho, C. S., & Ho, W. S. (2018). The characterisation and treatment of food waste for improvement of biogas production during anaerobic digestion – A review. Journal of cleaner production, 172, 1545-1558. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.10.199
- Cai, Y., Gallegos, D., Zheng, Z., Stinner, W., Wang, X., Pröter, J., & Schäfer, F. (2021). Exploring the combined effect of total ammonia nitrogen, pH and temperature on anaerobic digestion of chicken manure using response surface methodology and two kinetic models. Bioresource Technology, 337, 125328. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125328.
- Chow, W. L., Chong, S., Lim, J. W., Chan, Y. J., Chong, M. F., Tiong, T. J., Chin, J. K., & Pan, G.-T. (2020). Anaerobic co-digestion of wastewater sludge: A review of potential co-substrates and operating factors for improved methane yield. Processes, 8(1), 39. https://doi.org/https://doi.org/10.3390/pr8010039.
- Córdoba, V., Fernández, M., & Santalla, E. (2018). The effect of substrate/inoculum ratio on the kinetics of methane production in swine wastewater anaerobic digestion. Environmental Science and Pollution Research, 25, 21308-21317. https://doi.org/https://doi.org/10.1007/s11356-017-0039-6.
- de Quadros, T. C. F., Sicchieri, I. M., Perin, J. K. H., Challiol, A. Z., Bortoloti, M. A., Fernandes, F., & Kuroda, E. K. (2023). Valorization of Fruit and Vegetable Waste by Anaerobic Digestion: Definition of Co-substrates and Inoculum. Waste and Biomass Valorization, 14(2), 407-419. https://doi.org/10.1007/s12649-022-01887-7.
- Dev, S., Saha, S., Kurade, M. B., Salama, E.-S., El-Dalatony, M. M., Ha, G.-S., Chang, S. W., & Jeon, B.-H. (2019). Perspective on anaerobic digestion for biomethanation in cold environments. Renewable and Sustainable Energy Reviews, 103, 85-95. https://doi.org/https://doi.org/10.1016/j.rser.2018.12.034.
- dos Santos, S., Chaves, S R M, & van Haandel, A. (2018). Influence of temperature on the performance of anaerobic treatment systems of municipal wastewater. Water SA, 44(2), 211-222. https://doi.org/http://dx.doi.org/10.4314/wsa.v44i2.07.
- DTIC. (2022). South African fresh produce market inquiry terms of Refeence. (1934). Retrieved from https://www.gov.za/sites/default/files/gcis_document/202203/46093gon1934.pdf.
- Duong, C. M., & Lim, T.-T. (2023). Use of regression models for development of a simple and effective biogas decision-support tool. Scientific Reports, 13(1), 4933. https://doi.org/10.1038/s41598-023-32121-6 .
- FAO. (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste reduction. https://www.fao.org/documents/card/en?details=ca6030en.
- Fredes, C., Pérez, M. I., Jimenez, M., Reutter, B., & Fernández-Verdejo, R. (2023). Tailored Informational Interventions for Reducing Surplus and Waste of Fruits and Vegetables in a Food Market: A Pilot Study. Foods, 12(12), 2313. https://www.mdpi.com/2304-8158/12/12/2313.
- Holechek, J. L., Geli, H. M., Sawalhah, M. N., & Valdez, R. (2022). A global assessment: can renewable energy replace fossil fuels by 2050? Sustainability, 14(8), 4792. https://doi.org/https://doi.org/10.3390/su14084792.
- Jun, Y., Yifan, W., Qiongyin, W., Shuo, Z., Meizhen, W., Huajun, F., Jun, J., Xiaopeng, Q., Yanfeng, Z., & Ting, C. (2022). Generation of fruit and vegetable wastes in the farmers’ market and its influencing factors: A case study from Hangzhou, China. Waste Management, 154, 331-339. https://doi.org/https://doi.org/10.1016/j.wasman.2022.10.023.
- Kassim, F. O., Thomas, C. P., & Afolabi, O. O. (2022). Integrated conversion technologies for sustainable agri-food waste valorization: A critical review. Biomass and Bioenergy, 156, 106314. https://doi.org/https://doi.org/10.1016/j.biombioe.2021.106314.
- Khumalo, S. M., Bakare, B. F., & Rathilal, S. (2023a). Optimization of ciprofloxacin sorption on chitosan-carbon nanotube composite using response surface methodology: Process variables and affinity evaluation. International Journal of Design & Nature and Ecodynamics, 18(6), 1371-1380. https://doi.org/https://doi.org/10.18280/ijdne.180610.
- Khumalo, S. M., Bakare, B. F., Tetteh, E. K., & Sudesh, R. (2023b). Application of response surface methodology on brewery wastewater treatment using chitosan as a coagulant. Water 15(6), 1176. https://doi.org/https://doi.org/10.3390/w15061176.
- Kreps, B. H. (2020). The rising costs of fossil‐fuel extraction: an energy crisis that will not go away. American journal of economics and sociology, 79(3), 695-717. https://doi.org/https://doi.org/10.1111/ajes.12336.
- Kuczman, O., Gueri, M. V. D., De Souza, S. N. M., Schirmer, W. N., Alves, H. J., Secco, D., Buratto, W. G., Ribeiro, C. B., & Hernandes, F. B. (2018). Food waste anaerobic digestion of a popular restaurant in Southern Brazil. Journal of cleaner production, 196, 382-389. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.05.282.
- Leite, V. D., Ramos, R. O., Lopes, W. S., de Araújo, M. C. U., de Almeida, V. E., da Silva Oliveira, N. M., & Viriato, C. L. (2024). Kinetic Modeling of Anaerobic Co-Digestion Of Plant Solid Waste with Sewage Sludge: Synergistic Influences of Total Solids and Substrate Particle Size in Biogas Generation. BioEnergy Research, 17(1), 744-755. https://doi.org/10.1007/s12155-023-10677-5.
- Lübken, M., Koch, K., Gehring, T., Horn, H., & Wichern, M. (2015). Parameter estimation and longterm process simulation of a biogas reactor operated under trace elements limitation. Applied energy, 142, 352-360. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.01.014.
- Machate, M. (2020). The conundrums of the estimated magnitude of food waste generated in South Africa. Planning, 15(6), 893-899. https://doi.org/https://doi.org/10.18280/ijsdp.150613.
- Madondo, N. I., Rathilal, S., & Bakare, B. F. (2022). Utilization of Response Surface Methodology in Optimization and Modelling of a Microbial Electrolysis Cell for Wastewater Treatment Using Box– Behnken Design Method. Catalysts, 12(9), 1052. https://www.mdpi.com/2073-4344/12/9/1052.
- Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540-555. https://doi.org/https://doi.org/10.1016/B978-0-12-803622-8.00004-5.
- Mkhize, N., Mjoli, N. S., Khumalo, S. M., Tettteh, E. K., Mahlangu, T.P.,, & Rathilal, S. (2023). Enhanced Biogas Production through Anaerobic Co-Digestion of Agricultural Wastes and Wastewater: A Case Study in South Africa. International Journal of Energy Production and Management,, 8(2), 123-131. https://doi.org/https://doi.org/10.18280/ijepm.080209.
- Mlaik, N., Sayadi, S., Masmoudi, M. A., Yaacoubi, D., Loukil, S., & Khoufi, S. (2024). Optimization of anaerobic co-digestion of fruit and vegetable waste with animal manure feedstocks using mixture design. Biomass Conversion and Biorefinery, 14(3), 4007-4016. https://doi.org/10.1007/s13399-022-02620-z.
- Montgomery, D. C. (2017). Design and Analysis of Experiments. John Wiley & Sons.
- Morais, N. W. S., Coelho, M. M. H., de Oliveira, M. G., Mourão, J. M. M., Pereira, E. L., & dos Santos, A. B. (2021). Kinetic study of methanization process through mathematical modeling in biochemical methane potential assays from four different inoculants. Water, Air, & Soil Pollution, 232, 1-16. https://doi.org/https://doi.org/10.1007/s11270-021-05387-7.
- Nie, E., He, P., Zhang, H., Hao, L., Shao, L., & Lü, F. (2021). How does temperature regulate anaerobic digestion? Renewable and Sustainable Energy Reviews, 150, 111453. https://doi.org/https://doi.org/10.1016/j.rser.2021.111453.
- Nkuna, R., Roopnarain, A., Rashama, C., & Adeleke, R. (2022). Insights into organic loading rates of anaerobic digestion for biogas production: a review. Critical Reviews in Biotechnology, 42(4), 487-507. https://doi.org/10.1080/07388551.2021.1942778.
- Oyaro, D. K., Oonge, Z. I., & Odira, P. M. (2021). Kinetic modelling of methane production from anaerobic digestion of banana wastes. International Journal of Engineering Research & Technology (IJERT), 10(3), 104-109. https://doi.org/http://www.ijert.org/.
- Ritchie, H., Rosado, P., & Roser, M. (2023). Fossil fuels. Our world in data. https://doi.org/https://doi.org/10.3390/pr8010039.
- Scano, E. A., Asquer, C., Pistis, A., Ortu, L., Demontis, V., & Cocco, D. (2014). Biogas from anaerobic digestion of fruit and vegetable wastes: Experimental results on pilot-scale and preliminary performance evaluation of a full-scale power plant. Energy conversion and Management, 77, 22-30. https://doi.org/https://doi.org/10.1016/j.enconman.2013.09.004.
- Uddin, M. M., & Wright, M. M. (2022). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews(0). https://doi.org/https://doi.org/10.1515/psr-2021-0068.
- Ukoba, K., Kunene, T. J., Harmse, P., Lukong, V. T., & Chien Jen, T. (2023). The Role of Renewable Energy Sources and Industry 4.0 Focus for Africa: A Review. Applied Sciences, 13(2), 1074. https://www.mdpi.com/2076-3417/13/2/1074.
- Wainaina, S., Lukitawesa, Kumar Awasthi, M., & Taherzadeh, M. J. (2019). Bioengineering of anaerobic digestion for volatile fatty acids, hydrogen or methane production: A critical review. Bioengineered, 10(1), 437-458. https://doi.org/10.1080/21655979.2019.1673937
- Yahaya, S., & Mardiyya, A. (2019). Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res, 13(4), 10192-10200. https://doi.org/http://dx.doi.org/10.26717/BJSTR.2019.13.002448 .
- Zhao, C., Yan, H., Liu, Y., Huang, Y., Zhang, R., Chen, C., & Liu, G. (2016). Bio-energy conversion performance, biodegradability, and kinetic analysis of different fruit residues during discontinuous anaerobic digestion. Waste management, 52, 295-301. https://doi.org/https://doi.org/10.1016/j.wasman.2016.03.028.
- Zhu, Y., Luan, Y., Zhao, Y., Liu, J., Duan, Z., & Ruan, R. (2023). Current Technologies and Uses for Fruit and Vegetable Wastes in a Sustainable System: A Review. Foods, 12(10), 1949. https://www.mdpi.com/2304-8158/12/10/1949.
- Zhuo, G., Yan, Y., Tan, X., Dai, X., & Zhou, Q. (2012). Ultrasonic-pretreated waste activated sludge hydrolysis and volatile fatty acid accumulation under alkaline conditions: effect of temperature. Journal of Biotechnology, 159(1-2), 27-31. https://doi.org/https://doi.org/10.1016/j.jbiotec.2012.01.005.