Have a personal or library account? Click to login
The Effect of Design and the Accelerated Wear Test of Agricultural Nozzles on the Resulting Droplet Size Cover

The Effect of Design and the Accelerated Wear Test of Agricultural Nozzles on the Resulting Droplet Size

Open Access
|Feb 2025

References

  1. Al-Taie, H. A. H. & Kadhim, N. S. (2023). The Effect of Power Sources in the Agricultural Tractor and the Developed Sprayer System on the Performance of the Electrical and Mechanical Sprayer System and some Performance Indicators of the Engine. IOP Conference Series: Earth and Environmental Science, 1262(9). https://doi.org/10.1088/1755-1315/1262/9/092005.
  2. ASABE. (2009). Spray nozzle classification by droplet spectra. ANSI/ASAE S572.1 W/Corr.1, 2009.
  3. Bissell, D., Lai, W., Stegmeir, M., Troolin, D., Pothos, S. & Lengsfeld, C. (2014). An approach to spray characterization by combination of measurement techniques. In ILASS Americas 26th Annual Conference on Liquid Atomization and Spray Systems. Portland.
  4. Bueno, M. R., Cunha, J. P. A. R. da & de Santana, D. G. (2017). Assessment of spray drift from pesticide applications in soybean crops. Biosystems Engineering, 154. https://doi.org/10.1016/j.biosystemseng.2016.10.017.
  5. Carter, O. W., Prostko, E. P. & Davis, J. W. (2017). The Influence of Nozzle Type on Peanut Weed Control Programs. Peanut Science, 44(2). https://doi.org/10.3146/ps17-4.1.
  6. Creech, C. F., Henry, R. S., Fritz, B. K. & Kruger, G. R. (2015). Influence of Herbicide Active Ingredient, Nozzle Type, Orifice Size, Spray Pressure, and Carrier Volume Rate on Spray Droplet Size Characteristics. Weed Technology, 29(2). https://doi.org/10.1614/wt-d-14-00049.1
  7. Creech, C. F., Moraes, J. G., Henry, R. S., Luck, J. D. & Kruger, G. R. (2016). The Impact of Spray Droplet Size on the Efficacy of 2,4-D, Atrazine, Chlorimuron-Methyl, Dicamba, Glufosinate, and Saflufenacil. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00034.1.
  8. Dorr, G. J., Hewitt, A. J., Adkins, S. W., Hanan, J., Zhang, H. & Noller, B. (2013). A comparison of initial spray characteristics produced by agricultural nozzles. Crop Protection, 53. https://doi.org/10.1016/j.cropro.2013.06.017.
  9. Farias, M. A. G. L., Raetano, C. G., Chechetto, R. G., Ferreira-Filho, P. J., Guerreiro, J. C., Bonini, C. S. B., Prado, E. P. (2020). Spray nozzles and droplet size effects on soybean canopy deposits and stink bugs control in west region of São Paulo state - Brazil. Phytoparasitica, 48(2). https://doi.org/10.1007/s12600-020-00786-8.
  10. Ferguson, J. C., Chauhan, B. S., Chechetto, R. G., Hewitt, A. J., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2019). Droplet-size effects on control of chloris spp. with Six POST herbicides. Weed Technology, 33(1). https://doi.org/10.1017/wet.2018.99.
  11. Ferguson, J. C., Chechetto, R. G., Adkins, S. W., Hewitt, A. J., Chauhan, B. S., Kruger, G. R. & O’Donnell, C. C. (2018). Effect of spray droplet size on herbicide efficacy on four winter annual grasses. Crop Protection, 112. https://doi.org/10.1016/j.cropro.2018.05.020.
  12. Ferguson, J. C., Chechetto, R. G., Hewitt, A. J., Chauhan, B. S., Adkins, S. W., Kruger, G. R. & O’Donnell, C. C. (2016). Assessing the deposition and canopy penetration of nozzles with different spray qualities in an oat (Avena sativa L.) canopy. Crop Protection, 81, 14-19. https://doi.org/10.1016/j.cropro.2015.11.013
  13. Ferreira, P. H. U., Thiesen, L. V., Pelegrini, G., Ramos, M. F. T., Pinto, M. M. D. & da Costa Ferreira, M. (2020). Physicochemical properties, droplet size and volatility of dicamba with herbicides and adjuvants on tank-mixture. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-75996-5.
  14. Lafferty, C. L. & Tian, L. F. (2013). The impacts of pre-orifice and air-inlet design features on nozzle performance. https://doi.org/10.13031/2013.7343.
  15. Li, S., Chen, C., Wang, Y., Kang, F. & Li, W. (2021). Study on the atomization characteristics of flat fan nozzles for pesticide application at low pressures. Agriculture (Switzerland), 11(4). https://doi.org/10.3390/agriculture11040309.
  16. Liao, J., Hewitt, A. J., Wang, P., Luo, X., Zang, Y., Zhou, Z., O’donnell, C. (2019). Development of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests. International Journal of Agricultural and Biological Engineering, 12(6). https://doi.org/10.25165/j.ijabe.20191206.5014.
  17. Liao, J., Luo, X., Wang, P., Zhou, Z., O’Donnell, C. C., Zang, Y. & Hewitt, A. J. (2020). Analysis of the influence of different parameters on droplet characteristics and droplet size classification categories for air induction nozzle. Agronomy, 10(2). https://doi.org/10.3390/agronomy10020256
  18. McGinty, J., Baumann, P., Hoffmann, W. & Fritz, B. (2016). Evaluation of the Spray Droplet Size Spectra of Drift-reducing Agricultural Spray Nozzle Designs. American Journal of Experimental Agriculture, 11(3). https://doi.org/10.9734/ajea/2016/23785.
  19. Meyer, C. J., Norsworthy, J. K., Kruger, G. R. & Barber, T. L. (2016). Effect of Nozzle Selection and Spray Volume on Droplet Size and Efficacy of Engenia Tank-Mix Combinations. Weed Technology, 30(2). https://doi.org/10.1614/wt-d-15-00141.1.
  20. Milanowski, M., Subr, A., Combrzyński, M., Różańska-Boczula, M. & Parafiniuk, S. (2022a). Effect of Adjuvant, Concentration and Water Type on the Droplet Size Characteristics in Agricultural Nozzles. Applied Sciences (Switzerland), 12(12), 5821. https://doi.org/10.3390/app12125821.
  21. Milanowski, M., Subr, A. & Parafiniuk, S. (2022b). Evaluation of Different Internal Designs of Hydraulic Nozzles under an Accelerated Wear Test. Applied Sciences (Switzerland), 12(2). https://doi.org/10.3390/app12020889.
  22. Parafiniuk, S., Milanowski, M., Subr, A. & Krawczuk, A. (2017). Influence of surface tension of water on droplet size produced by flat jet nozzles. 295–300. https://doi.org/10.24326/fmpmsa.2017.53.
  23. Spraying Systems Co. (2014). TeeJet technologies, Catalogue 51A-M. Wheaton. Wheaton, Illinois USA.
  24. Subr, A., Al-Ahmadi, A. & Abbas, M. (2020). Effect of nozzle type and some locally used surfactants on the spray quality. Iraqi Journal of Agricultural Sciences, 51(3), 856-864. https://doi.org/10.36103/ijas.v51i3.1040
  25. Subr, A. K., Alheidary, M. H. R. & Al-Ahmadi, A. H. (2019). The informatics adequacy on the spraying technology in Iraqi agricultural researches: A literature review. Journal of Physics: Conference Series, 1294(9), 092007. https://doi.org/10.1088/1742-6596/1294/9/092007.
  26. Vieira, B. C., Butts, T. R., Rodrigues, A. O., Golus, J. A., Schroeder, K. & Kruger, G. R. (2018). Spray particle drift mitigation using field corn (Zea mays L.) as a drift barrier. Pest Management Science, 74(9). https://doi.org/10.1002/ps.5041.
  27. Xiao, L., Zhu, H., Wallhead, M., Horst, L., Ling, P. & Krause, C. R. (2018). Characterization of biological pesticide deliveries through hydraulic nozzles. Transactions of the ASABE, 61(3). https://doi.org/10.13031/trans.12698.
  28. Yao, W., Lan, Y., Hoffmann, W. C., Li, J., Guo, S., Zhang, H. & Wang, J. (2020). Droplet size distribution characteristics of aerial nozzles by Bell206L4 helicopter under medium and low airflow velocity wind tunnel conditions and field verification test. Applied Sciences (Switzerland), 10(6). https://doi.org/10.3390/app10062179.
  29. Yates, W. E., Cowden, R. E. & Akesson, N. B. (1985). Drop size spectra from nozzles in high-speed airstreams. Transactions of the American Society of Agricultural Engineers, 28(2). https://doi.org/10.13031/2013.32268.
DOI: https://doi.org/10.2478/agriceng-2025-0001 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 1 - 13
Submitted on: Dec 1, 2024
|
Accepted on: Feb 1, 2025
|
Published on: Feb 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Alaa Subr, Stanisław Parafiniuk, Ameer Al-Ahmadi, Marek Milanowski, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.