Have a personal or library account? Click to login
Experimental Studies on the Operation of Agricultural Crops Mowing Unit with Simultaneous Chopping and Incorporation of Stubble Into the Soil Cover

Experimental Studies on the Operation of Agricultural Crops Mowing Unit with Simultaneous Chopping and Incorporation of Stubble Into the Soil

Open Access
|Nov 2023

References

  1. Abdi, J., Golmohammadi, A., Shahgholi, G., Fanaei, A. R., Szymanek, M., & Tanas, W. (2022). Test and evaluation of the factors affecting on the freshly harvested peanut threshing machine performance. Agricultural Engineering, 26(1), 167-185.
  2. Adamchuk, V., Bulgakov, V., Nadykto, V. & Ivanovs, S. (2020). Investigation of tillage depth of black fallow impact upon moisture evaporation intensity. Engineering Rural for Development, 19, 377-383. https://doi.org/10.22616/ERDev.2020.19.TF090.
  3. Boryga, M. (2023). Trajectory Planning For Tractor Turning Using The Trigonometric Transition Curve. Agricultural Engineering, 27(1), 203-212.
  4. Bulgakov, V., Nadykto, V., Ivanovs, S. & Nowak, J. (2019a). Research of variants to improve steerability of movement of trailed asymmetric harvesting aggregate. Engineering for Rural Development, 18, 136-143. https://doi.org/10.22616/ERDev2019.18.N169.
  5. Bulgakov, V., Pascuzzi, S., Adamchuk, V., Kuvachov, V. & Nozdrovicky, L. (2019b). Theoretical study of transverse offsets of wide span tractor working implements and their influence on damage to row crops. Agriculture, 9(7), 44. https://doi.org/10.3390/agriculture9070144.
  6. Bulgakov, V., Nadykto, V., Kaletnik, H. & Ivanovs, S. (2018a). Field experimental investigations of performance-and-technological indicators of operation of swath header asymmetric machine-and-tractor aggregate. Engineering Rural for Development. 17, 227-233. https://doi.org//10.22616/ERDev2018.17.N269.
  7. Bulgakov, V., Pascuzzi, S., Nadykto, V. & Ivanovs, S. (2018b). A mathematical model of the plane-parallel movement of an asymmetric machine-and-tractor aggregate. Agriculture, 8. https://doi.org/10.3390/agriculture8100151.
  8. Caixia, S., Lei, Y., Cairui, H., Yajun, J., Youchum, D. & Qingxi, L. (2015). Pipeline Design and Simulation Optimization of Hydraulic Driving System for Rape Windrower. Journal of System Simulation, 27, 3087-3095.
  9. Chengqian, J., Wenqing, Y. & Chongyou, W. (2012). Mathematical model and influencing factors analysis for windrow quality of 4SY-2 rape windrower. Transactions of the Chinese Society of Agricultural Engineering, 28, 45-58.
  10. Chongyou, W., Shengyuan, X. & Mei, J. (2014). Comparation on rape combine harvesting and two-stage harvesting. Transactions of the Chinese Society of Agricultural Engineering, 30, 10-16.
  11. Foster, A.A., Strosser, R.P., Peters, J. & Sun, J.-Q. (2005). Automatic velocity control of a self-propelled windrower. Computers and Electronics in Agriculture, 47, 41–58. https://doi.org/10.1016/j.compag.2004.10.00/.
  12. Gesce, D.M. (2004). New windrower series added to Hesston lineup. Diesel Progress North American Edition, 70, 76-77.
  13. Jin, M., Zhang, M., Wang, G., Liang, S., Wu, C. & He, R. (2022). Analysis and Simulation of Wheel-Track High Clearance Chassis of Rape Windrower. Agriculture, 12, 1150. https://doi.org/10.3390/agriculture12081150.
  14. Jinfeng, L., Jiyun, L., H., X., Xiang, C. & Xuemin, Z. (2021). Design and Experiment of Self-propelled Pea Windrower. Transactions of the Chinese Society of Agricultural Machinery, 52, 107-116.
  15. Gawłowski, S., Kulig, R., Łysiak, G., Adam, Z., & Hyła, P. (2020). Impact of moisture and speed of threshers on efficiency of crushing of lupine seeds. Agricultural Engineering, 24(2), 55-63.
  16. Konstantinov, M., Gluchkov, I. & Ognev, I. (2019). Justification optimal operating parameters of the conveyor, which is the mechanism of the header for two-phase harvesting by batch method, taking into account the minimization of losses of grain. E3S Web of Conferences, 126, 4-10. https://doi.org/10.1051/e3sconf/201912600046.
  17. Kyryliuk, V., Tymoshchuk, T., Kotelnytska, H., Barladiuha, V. & Dolid, D. (2020). Supplies of productive moisture and yielding capacity of crops rotation depending on the systems of basic tillage and fertilizing. Scientific Horizons, 7, 141-148. https://doi.org/10.33249/2663-2144-2020-92-7-141-148.
  18. Nadykto, V., Kyurchev, V., Findura, P., Hutsol, T., Kupraska, S., Krakowiak-Bal, A. & Vsyuk, V. (2023). European Green Deal: Study of the Combined Agricultural Aggregate. Sustainability, 15, 12656. https://doi.org/10.3390/su151612656.
  19. Panchenko, A., Voloshina, A., Milaeva, I. & Luzan, P. (2019). Operating conditions’ influence on the change of functional characteristics for mechatronic systems with orbital hydraulic motors. In: Nadykto V. (eds) Modern Development Paths of Agricultural Production, 169-176. https://doi.org/10.1007/978-3-030-14918-5_18.
  20. Panchenko, А., Voloshinа, А., Kiurchev, S., Titova, O., Onopreychuk, D., Stefanov, V., Safoniuk, I., Pashchenko, V., Radionov, H. & Golubok, M. (2018). Development of the universal model of mechatronic system with a hydraulic drive. Eastern-European Journal of Enterprise Technologies, 7(94), 51-60. https://doi.org/10.15587/1729-4061.2018.139577.
  21. Ping, L., Qingxi, L., Lei, L., Cairui, H., Peng, H. & Haitong, L. (2014). Design and experiment of the main device of 4SY-1.8 modified rape windrower. Transactions of the Chinese Society of Agricultural Machinery, 45, 53-58.
  22. Price, J.S., Hobson, R.N., Neale, M.A. & Bruce, D.M. (1996). Seed losses in commercial harvesting of oilseed rape. Journal of Agricultural and Engineering Research, 65, 183-191.
  23. Rudoy, D., Egyan, M., Kulikova, N. & Chigvintsev, V. (2021). Review and Analysis of technologies for harvesting perennial grain crops. IOP Conference Series: Earth and Environmental Science, 937, 022112. https://doi.org/10.1088/1755-1315/937/2/022112.
  24. Shinners, T.J., Digman, M.F. & Panuska, J.C. (2012). Overlap loss of manually and automatically guided mowers. Applied Engineering in Agriculture, 28, 5-8. https://doi.org/10.13031/2013.30085.
  25. Undersander, D., Cosgrove, D., Cullen, E., Grau, C., Rice, M.E., Renz, M., Sheaffer, C., Shewmaker, G. & Sulc, M. (2011). Alfalfa Management Guide. American Society of Agronomy, Inc. Crop Science Society of America.
  26. Voloshina, А., Panchenko, A., Titova, O., Milaeva, I. & Pastushenko, A. (2021). Prediction of Changes in the Output Characteristics of the Planetary Hydraulic Motor. Inter Partner 2020: Advanced Manufacturing Processes II. LNME, Springer 744-754. https://doi.org/10.1007/978-3-030-68014-5_72.
  27. Wang, Y., Adnan, A., Wang, X. Yang, S., Odhiambo, M. R.O., Ding, Q., Guoxiang, S. & Shi, Y. (2020). Study of the mechanics and micro-structure of wheat straw returned to soil in relation to different tillage methods. Agronomy, 10, 894. DOI: 10.3390/agronomy10060894.
  28. Xu, G., Xie, Y., Peng, S., Liang, L. & Ding, Q. (2023). Performance Evaluation of Vertical Discs and Disc Coulters for Conservation Tillage in an Intensive Rice–Wheat Rotation System. Agronomy, 13, 1336. DOI: 10.3390/agronomy13051336.
  29. Yitao, L., Chuanjie, C., Caixia, S., Boping, T. & Qingxi, L. (2014). Design and experiment of 4SY-1.8 rape walking windrower. Transactions of the Chinese Society of Agricultural Machinery, 45, 94-100.
  30. Zhuohuai, G., Tao, J., Haitong, L. & Chongyou, W. (2021). Analysis and test of the laying quality of inclined transportation rape windrower. Transactions of the Chinese Society of Agricultural Machinery, 37, 59-68.
DOI: https://doi.org/10.2478/agriceng-2023-0022 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 301 - 313
Submitted on: Sep 1, 2023
Accepted on: Sep 1, 2023
Published on: Nov 30, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Volodymyr Nadykto, Sergey Kiurchev, Tatiana Chorna, Taras Hutsol, Krzysztof Mudryk, Szymon Głowacki, Anatoliy Rud, Alona Shevtsova, Igor Ryabov, Katarzyna Szwedziak, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.