Have a personal or library account? Click to login
Reducing the Probability of Failure in Manufacturing Equipment by Quantitative FTA Analysis Cover

Reducing the Probability of Failure in Manufacturing Equipment by Quantitative FTA Analysis

Open Access
|Oct 2023

References

  1. Abdelgawad, M., & Fayek, A. R. (2010). Risk Management in the Construction Industry Using Combined Fuzzy FMEA and Fuzzy AHP. Journal of Construction Engineering and Management, 136(9), 1028-1036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000210.
  2. Aliee, H., & Zarandi, H. R. (2013). A fast and accurate fault tree analysis based on stochastic logic implemented on field-programmable gate arrays. IEEE Transactions on Reliability, 62(1), 13-22. https://doi.org/10.1109/TR.2012.2221012.
  3. Aven, T. (2011). On the new ISO guide on risk management terminology. Reliability Engineering & System Safety, 96(7), 719-726. https://doi.org/10.1016/J.RESS.2010.12.020.
  4. Baig, A. A., Ruzli, R., & Buang, A. B. (2013). Reliability Analysis Using Fault Tree Analysis: A Review. International Journal of Chemical Engineering and Applications, Vol. 4(3), 169-173. https://doi.org/10.7763/ijcea.2013.v4.287.
  5. Baraldi, P., Compare, M., Despujols, A., Rossetti, G., & Zio, E. (2010). An hybrid Monte Carlo and Fuzzy Logic Method for Maintenance Modelling. 38th ESReDA Seminar, 1-14. https://hal.archives-ouvertes.fr/hal-00720980.
  6. Barozzi, M., Contini, S., Raboni, M., Torretta, V., Casson Moreno, V., & Copelli, S. (2021). Integration of Recursive Operability Analysis, FMECA and FTA for the Quantitative Risk Assessment in biogas plants: Role of procedural errors and components failures. Journal of Loss Prevention in the Process Industries, 71, 104468. https://doi.org/10.1016/J.JLP.2021.104468.
  7. Čepin, M., & Mavko, B. (2002). A dynamic fault tree. Reliability Engineering and System Safety, 75(1), 83-91. https://doi.org/10.1016/S0951-8320(01)00121-1.
  8. Chemweno, P., Pintelon, L., van Horenbeek, A., & Muchiri, P. (2015). Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach. International Journal of Production Economics, 170, 663-676. https://doi.org/10.1016/J.IJPE.2015.03.017.
  9. da Costa, M. A. B., Brandão, A. L. T., Santos, J. G. F., Pinto, J. C., & Nele, M. (2020). Quantitative FTA using Monte Carlo analyses in a pharmaceutical plant. European Journal of Pharmaceutical Sciences, 146, 105265. https://doi.org/10.1016/J.EJPS.2020.105265.
  10. Dubois, D., & Prade, H. (2012). Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets. Fuzzy Sets and Systems, 192, 3-24. https://doi.org/10.1016/J.FSS.2010.11.007.
  11. Dugan, J. B., Bavuso, S. J., & Boyd, M. A. (1992). Dynamic Fault-Tree Models for Fault-Tolerant Computer Systems. IEEE Transactions on Reliability, 41(3), 363-377. https://doi.org/10.1109/24.159800.
  12. Durga Rao, K., Gopika, V., Sanyasi Rao, V. V. S., Kushwaha, H. S., Verma, A. K., & Srividya, A. (2009). Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment. Reliability Engineering & System Safety, 94(4), 872–883. https://doi.org/10.1016/J.RESS.2008.09.007.
  13. Dziki, D. (2023). The Latest Innovations in Wheat Flour Milling: A Review. Agricultural Engineering, 27(1), 147-162. https://doi.org/10.2478/agriceng-2023-0011.
  14. Flage, R., Baraldi, P., Zio, E., & Aven, T. (2013). Probability and Possibility-Based Representations of Uncertainty in Fault Tree Analysis. Risk Analysis, 33(1), 121-133. https://doi.org/10.1111/J.1539-6924.2012.01873.X.
  15. Hu, G., Huang, P., Bai, Z., Wang, Q., & Qi, K. (2021). Comprehensively analysis the failure evolution and safety evaluation of automotive lithium-ion battery. ETransportation, 10, 100140. https://doi.org/10.1016/J.ETRAN.2021.100140.
  16. Kabir, S. (2017). An overview of fault tree analysis and its application in model based dependability analysis. In Expert Systems with Applications (Vol. 77, pp. 114-135). Elsevier Ltd. https://doi.org/10.1016/j.eswa.2017.01.058.
  17. Kabir, S., Geok, T. K., Kumar, M., Yazdi, M., & Hossain, F. (2020). A Method for Temporal Fault Tree Analysis Using Intuitionistic Fuzzy Set and Expert Elicitation. IEEE Access, 8, 980-996. https://doi.org/10.1109/ACCESS.2019.2961953
  18. Kang, J., Sun, L., & Guedes Soares, C. (2019). Fault Tree Analysis of floating offshore wind turbines. Renewable Energy, 133, 1455-1467. https://doi.org/10.1016/j.renene.2018.08.097.
  19. Kovalenko, N., Hutsol, T., Kovalenko, V., Glowacki, S., Kokovikhin, S., Dubik, V., Mudragel, O., Kuboń, M. & Tomaszewska-Górecka, W. (2021). Hydrogen Production Analysis: Prospects for Ukraine. Agricultural Engineering, 25(1). 99-114. https://doi.org/10.2478/agriceng-2021-0008.
  20. Luo, W., Wei, O., & Wan, H. (2021). SATMCS: An Efficient SAT-Based Algorithm and Its Improvements for Computing Minimal Cut Sets. IEEE Transactions on Reliability, 70(2), 575–589. https://doi.org/10.1109/TR.2020.3014012.
  21. Markulik, S., Šolc, M., Petrík, J., Balážiková, M., Blaško, P., Kliment, J., & Bezák, M. (2021a). Application of fta analysis for calculation of the probability of the failure of the pressure leaching process. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11156731.
  22. Markulik, S., Šolc, M., Petrík, J., Balážiková, M., Blaško, P., Kliment, J., & Bezák, M. (2021b). Application of fta analysis for calculation of the probability of the failure of the pressure leaching process. Applied Sciences (Switzerland), 11(15). https://doi.org/10.3390/app11156731.
  23. Miri Lavasani, M.R., Wang, J., Yang, Z., Finlay, J. (2011). Application of fuzzy fault tree analysis on oil and gas offshore pipelines (Vol. 1, Issue 1, pp. 29-42). International Journal of Marine Science and Engineering. https://www.sid.ir/en/Journal/ViewPaper.aspx?ID=244081.
  24. Nadjafi, M., Farsi, M. A., & Jabbari, H. (2016). Reliability analysis of multi-state emergency detection system using simulation approach based on fuzzy failure rate. International Journal of System Assurance Engineering and Management 2016, 8(3), 532-541. https://doi.org/10.1007/S13198-016-0563-7.
  25. Plura, J. (2012). Plánování jakosti II. Quality Planning II. Technical University of Ostrava.
  26. Postnikova, M., Mikhailov, E., Kvitka, S., Kurashkin, S., Kovalov, O., Klymenko, O., Semenov, A., Kucher, V. & Kowalczyk, Z. (2022). The Grain Cleaning Production Lines’ Energysaving Operation Modes of Electromechanical Systems. Agricultural Engineering, 26(1) 51-63. https://doi.org/10.2478/agriceng-2022-0005.
  27. Purba, J. H., Sony Tjahyani, D. T., Ekariansyah, A. S., & Tjahjono, H. (2015). Fuzzy probability based fault tree analysis to propagate and quantify epistemic uncertainty. Annals of Nuclear Energy, 85, 1189-1199. https://doi.org/10.1016/J.ANUCENE.2015.08.002.
  28. Rao, K. D., Rao, V. V. S. S., Verma, A. K., & Srividya, A. (2010). Dynamic Fault Tree Analysis: Simulation Approach. Springer Series in Reliability Engineering, 36, 41-64. https://doi.org/10.1007/978-1-84882-213-9_2.
  29. Ruijters, E., & Stoelinga, M. (2015a). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review, 15-16, 29-62. https://doi.org/10.1016/J.COSREV.2015.03.001.
  30. Ruijters, E., & Stoelinga, M. (2015b). Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review (Vol. 15, pp. 29-62). Elsevier Ireland Ltd. https://doi.org/10.1016/j.cosrev.2015.03.001.
  31. Sallak, M., Simon, C., & Aubry, J. F. (2008). A fuzzy probabilistic approach for determining safety integrity level. IEEE Transactions on Fuzzy Systems, 16(1), 239-248. https://doi.org/10.1109/TFUZZ.2007.903328.
  32. Song, H., Zhang, H. Y., & Chan, C. W. (2008). Fuzzy fault tree analysis based on T–S model with application to INS/GPS navigation system. Soft Computing 2008, 13(1), 31-40. https://doi.org/10.1007/S00500-008-0290-3.
  33. Spalanzani, W., Ciptomulyono, U., Suef, M., Asmuddin, & Salwiah. (2020). Fault tree and decision making trial and evaluation laboratory model for formulating risk mitigation strategies at water production process of PDAM Baubau. AIP Conference Proceedings, 2217(1), 030111. https://doi.org/10.1063/5.0000750.
  34. Stamatelatos, M., Caraballo, M. J., Vesely, W., Dugan, J., Fragola, M. J., Minarick, M. J., Railsback, M. J., & Jsc, N. (2002). Fault Tree Handbook with Aerospace Applications Contributing Authors (listed in alphabetic order): Fault Tree Handbook with Aerospace Applications.
  35. Tanaka, H., Fan, L. T., Lai, F. S., & Toguchi, K. (1983). Fault-Tree Analysis by Fuzzy Probability. IEEE Transactions on Reliability, R-32(5). https://doi.org/10.1109/TR.1983.5221727
  36. Tavakoli, M., & Nafar, M. (2021). Modification of the FFTA method for calculating and analyzing the human reliability of maintenance groups in power transmission grids. International Journal of Systems Assurance Engineering and Management. https://doi.org/10.1007/s13198-021-01141-8.
  37. Vesely, W. E., & Narum, R. E. (1970). PREP AND KITT: COMPUTER CODES FOR THE AUTOMATIC EVALUATION OF A FAULT TREE. https://doi.org/10.2172/4106635.
  38. Volkanovski, A., & Čepin, M. (2011). Implication of PSA uncertainties on risk-informed decision making. Nuclear Engineering and Design, 241(4), 1108-1113. https://doi.org/10.1016/J.NUCENGDES.2010.02.041.
  39. Xu, J., Yang, M., & Li, S. (2021). Hardware Reliability Analysis of a Coal Mine Gas Monitoring System Based on Fuzzy-FTA. Applied Sciences 2021, Vol. 11, Page 10616, 11(22), 10616. https://doi.org/10.3390/APP112210616.
  40. You, X., & Tonon, F. (2012). Event-Tree Analysis with Imprecise Probabilities. Risk Analysis, 32(2), 330–344. https://doi.org/10.1111/J.1539-6924.2011.01721.X.
  41. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
  42. Zhu, H. L., Liu, S. S., Qu, Y. Y., Han, X. X., He, W., & Cao, Y. (2021). A new risk assessment method based on belief rule base and fault tree analysis. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability. https://doi.org/10.1177/1748006X211011457.
  43. Zio, E., & Pedroni, N. (2010). Reliability Estimation by Advanced Monte Carlo Simulation. Springer Series in Reliability Engineering, 36, 3–39. https://doi.org/10.1007/978-1-84882-213-9_1
  44. Zonouz, S. A., & Miremadi, S. G. (2006). A Fuzzy-Monte Carlo simulation approach for fault tree analysis. Proceedings - Annual Reliability and Maintainability Symposium, 428-433. https://doi.org/10.1109/RAMS.2006.1677412.
DOI: https://doi.org/10.2478/agriceng-2023-0019 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 255 - 272
Submitted on: May 1, 2023
Accepted on: Sep 1, 2023
Published on: Oct 28, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Marián Bujna, Miroslav Prístavka, Chia Kuang Lee, Andrzej Borusiewicz, Waldemar Samociuk, Ivan Beloev, Urszula Malaga-Toboła, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.