Have a personal or library account? Click to login
Electrotechnical Tools and Computer Image Analysis in Assessing the Quality of Maize Grain During Storage Cover

Electrotechnical Tools and Computer Image Analysis in Assessing the Quality of Maize Grain During Storage

Open Access
|Sep 2023

References

  1. Abdullah, M. Z., Guan, L. C., Lim, K. C., & Karim, A. A. (2004). The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. Journal of food engineering, 61(1), 125-135.
  2. Alexandratos, N. & Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 Revision. ESA Working Paper Rome. FAO.
  3. Białobrzewski, I. (2005). Wykorzystanie sieci neuronowej do estymacji wartości wilgotności względnej powietrza na podstawie wartości jego temperatury. Inżynieria Rolnicza, 1(61), 15-22.
  4. Białobrzewski, I., Markowski, M. & Bowszys, J. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza, 8(60), 23-30.
  5. Broda, M., Grajek, W. (2009). Mikroflora ziaren zbóż i metody redukcji skażenia mikrobiologicznego. Zeszyty Problemowe Postępów Nauk Rolniczych, 2, 19–30.
  6. Chai, T. (2016). Industrial process control systems: research ststus and development direction. Scientia Sincia Informations, 46(8), 1003-1015.
  7. Du, C. J. & Sun, D.-W. (2005). Correlating shrinkage with yield, water content and texture of pork ham by computer vision. Journal of Food Process Engineering, 28, 219-232.
  8. Dworczak, M. & Szlasa, R. (2001). Wpływ innowacji na wzrost konkurencyjności przedsiębiorstw. Zarzadzanie innowacjami. Warszawa, PL: Oficyna Wydawnicza Politechniki Warszawskiej.
  9. Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical transactions of the Royal Society B: biological sciences, 369(1639), 20120273.
  10. Gonzales-Barron, U., & Butler, F. (2006). Statistical and spectral texture analysis methods for discrimination of bread crumb images. In 13th World Congress of Food Science & Technology 2006 (pp. 164-164).
  11. Iqbal, A., Valous, N. A., Mendoza, F., Sun, D.-W. & Allen, P. (2010). Classification of pre-sliced pork and Turkey ham qualities based on image color and textural features and their relationships with consumer responses. Meat Science, 84, 455-465.
  12. Kręcidło, Ł., & Krzyśko-Łupicka, T. (2015). Sensitivity of molds isolated from warehouses of food production facility on selected essential oils. Ecological Engineering & Environmental Technology, 43, 100-108.
  13. Li, J., Liao, G., Ou, Z., & Jin, J. (2007, December). Rapeseed seeds classification by machine vision. In Workshop on Intelligent Information Technology Application (IITA 2007), pp. 222-226.
  14. Liu, Z. Y., Cheng, F., Ying, Y. B., & Rao, X. Q. (2005). Identification of rice seed varieties using neural network. Journal of Zhejiang University-Science B, 6(11), 1095-1100.
  15. Majumdar, S., Jayas, D, S. & Symons, S. J. (1999). Textural features for grain identification. Agricultural Engineering Journal, 8(4), 213-222.
  16. Manickavasagab, A., Sathya, G., Jayas, D.S. & White, N.D.G. (2008). Wheat class identification using monochrome images. Journal of Cereak Science, 47, 518-527.
  17. Mladenov, M., & Dejanov, M. (2004, June). Analysis of the possibilities for separator color and texture features. In Proceedings of the International Conference on Computer Systems and Technologies, Rousse, Bulgaria, pp. 17-18.
  18. Mohan, A. L., Jayas, D. S., White, N. D. G., & Karunakaran, C. (2004). Classification of bulk oilseeds, specialty seeds and pulses using their reflectance characteristics. In Proceedings of the International Quality Grain Conference, Indiana, USA, pp. 19-22.
  19. Qian, F., Zhong, W. & Du, W. (2017). Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Elsevier Engineering, 3(2), 154-160.
  20. Sànchez, A. J., Albarracin, W., Grau, R., Ricolfe, C. & Barat J. M. (2008). Control of ham salting by using image segmentation. Food Control, 19, 135-142.
  21. Szwedziak, K. (2019b). The use of vision techniques for the evaluation of selected quality parameters of maize grain during storage. E3S Web of Conference, 132, 01028.
  22. Szwedziak, K. (2019a). Artifical neutral networks and computer image analysis of selected quality parameters of pea seeds. E3S Web of Conference, 132, 01027.
  23. Tukiendorf, M. (2005). Zastosowanie sieci FBM w neuronowym modelowaniu mieszania dwuskładnikowych układów ziarnistych. Inżynieria Rolnicza, 9(14), 367-373.
  24. Tukiendorf, M., Szwedziak, K., & Sobkowicz, J. (2006). Określenie czystości ziarna konsumpcyjnego za pomocą komputerowej analizy obrazu. Inżynieria Rolnicza, 10, 519-525.
  25. Visen, N.S. Paliwal, J., Jayas, D.S. & White, N.D.G. (2004). Image analysis of bulk grain samples using neural networks. Canadian Biosystems Engineering, 46, 11-15.
DOI: https://doi.org/10.2478/agriceng-2023-0016 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 213 - 227
Submitted on: Apr 1, 2023
Accepted on: Aug 1, 2023
Published on: Sep 13, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Katarzyna Szwedziak, Petr Dolezal, Sylwester Tabor, Jacek Ogrodniczek, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.