References
- Abdullah, M. Z., Guan, L. C., Lim, K. C., & Karim, A. A. (2004). The applications of computer vision system and tomographic radar imaging for assessing physical properties of food. Journal of food engineering, 61(1), 125-135.
- Alexandratos, N. & Bruinsma, J. (2012). World Agriculture towards 2030/2050: the 2012 Revision. ESA Working Paper Rome. FAO.
- Białobrzewski, I. (2005). Wykorzystanie sieci neuronowej do estymacji wartości wilgotności względnej powietrza na podstawie wartości jego temperatury. Inżynieria Rolnicza, 1(61), 15-22.
- Białobrzewski, I., Markowski, M. & Bowszys, J. (2005). Symulacyjny model zmian pola temperatury w silosie zbożowym. Inżynieria Rolnicza, 8(60), 23-30.
- Broda, M., Grajek, W. (2009). Mikroflora ziaren zbóż i metody redukcji skażenia mikrobiologicznego. Zeszyty Problemowe Postępów Nauk Rolniczych, 2, 19–30.
- Chai, T. (2016). Industrial process control systems: research ststus and development direction. Scientia Sincia Informations, 46(8), 1003-1015.
- Du, C. J. & Sun, D.-W. (2005). Correlating shrinkage with yield, water content and texture of pork ham by computer vision. Journal of Food Process Engineering, 28, 219-232.
- Dworczak, M. & Szlasa, R. (2001). Wpływ innowacji na wzrost konkurencyjności przedsiębiorstw. Zarzadzanie innowacjami. Warszawa, PL: Oficyna Wydawnicza Politechniki Warszawskiej.
- Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical transactions of the Royal Society B: biological sciences, 369(1639), 20120273.
- Gonzales-Barron, U., & Butler, F. (2006). Statistical and spectral texture analysis methods for discrimination of bread crumb images. In 13th World Congress of Food Science & Technology 2006 (pp. 164-164).
- Iqbal, A., Valous, N. A., Mendoza, F., Sun, D.-W. & Allen, P. (2010). Classification of pre-sliced pork and Turkey ham qualities based on image color and textural features and their relationships with consumer responses. Meat Science, 84, 455-465.
- Kręcidło, Ł., & Krzyśko-Łupicka, T. (2015). Sensitivity of molds isolated from warehouses of food production facility on selected essential oils. Ecological Engineering & Environmental Technology, 43, 100-108.
- Li, J., Liao, G., Ou, Z., & Jin, J. (2007, December). Rapeseed seeds classification by machine vision. In Workshop on Intelligent Information Technology Application (IITA 2007), pp. 222-226.
- Liu, Z. Y., Cheng, F., Ying, Y. B., & Rao, X. Q. (2005). Identification of rice seed varieties using neural network. Journal of Zhejiang University-Science B, 6(11), 1095-1100.
- Majumdar, S., Jayas, D, S. & Symons, S. J. (1999). Textural features for grain identification. Agricultural Engineering Journal, 8(4), 213-222.
- Manickavasagab, A., Sathya, G., Jayas, D.S. & White, N.D.G. (2008). Wheat class identification using monochrome images. Journal of Cereak Science, 47, 518-527.
- Mladenov, M., & Dejanov, M. (2004, June). Analysis of the possibilities for separator color and texture features. In Proceedings of the International Conference on Computer Systems and Technologies, Rousse, Bulgaria, pp. 17-18.
- Mohan, A. L., Jayas, D. S., White, N. D. G., & Karunakaran, C. (2004). Classification of bulk oilseeds, specialty seeds and pulses using their reflectance characteristics. In Proceedings of the International Quality Grain Conference, Indiana, USA, pp. 19-22.
- Qian, F., Zhong, W. & Du, W. (2017). Fundamental theories and key technologies for smart and optimal manufacturing in the process industry. Elsevier Engineering, 3(2), 154-160.
- Sànchez, A. J., Albarracin, W., Grau, R., Ricolfe, C. & Barat J. M. (2008). Control of ham salting by using image segmentation. Food Control, 19, 135-142.
- Szwedziak, K. (2019b). The use of vision techniques for the evaluation of selected quality parameters of maize grain during storage. E3S Web of Conference, 132, 01028.
- Szwedziak, K. (2019a). Artifical neutral networks and computer image analysis of selected quality parameters of pea seeds. E3S Web of Conference, 132, 01027.
- Tukiendorf, M. (2005). Zastosowanie sieci FBM w neuronowym modelowaniu mieszania dwuskładnikowych układów ziarnistych. Inżynieria Rolnicza, 9(14), 367-373.
- Tukiendorf, M., Szwedziak, K., & Sobkowicz, J. (2006). Określenie czystości ziarna konsumpcyjnego za pomocą komputerowej analizy obrazu. Inżynieria Rolnicza, 10, 519-525.
- Visen, N.S. Paliwal, J., Jayas, D.S. & White, N.D.G. (2004). Image analysis of bulk grain samples using neural networks. Canadian Biosystems Engineering, 46, 11-15.