Have a personal or library account? Click to login
Anaerobic Digestion and Composting as Methods of Bio-Waste Management Cover

Anaerobic Digestion and Composting as Methods of Bio-Waste Management

Open Access
|Aug 2023

References

  1. Abdelsalam, E. M., Samer, M., Amer, M. A., & Amer, B. M. (2021). Biogas production using dry fermentation technology through co-digestion of manure and agricultural wastes. Environment, Development and Sustainability, 23(6), 8746-8757. https://doi.org/10.1007/s10668-020-00991-9
  2. Ajmal, M., Shi, A., Awais, M., Mengqi, Z., Zihao, X., Shabbir, A., Faheem, M., Wei, W., & Ye, L. (2021). Ultra-high temperature aerobic fermentation pretreatment composting: Parameters optimization, mechanisms and compost quality assessment. Journal of Environmental Chemical Engineering, 9(4), 105453. https://doi.org/10.1016/j.jece.2021.105453.
  3. Alessi, A., Lopes, A. D. C. P., Müller, W., Gerke, F., Robra, S., & Bockreis, A. (2020). Mechanical separation of impurities in biowaste: Comparison of four different pretreatment systems. Waste Management, 106, 12-20. https://doi.org/10.1016/j.wasman.2020.03.006
  4. Awais, M., Li, W., Munir, A., Omar, M. M., & Ajmal, M. (2021). Experimental investigation of downdraft biomass gasifier fed by sugarcane bagasse and coconut shells. Biomass Conversion and Biorefinery, 11, 429-444. https://doi.org/10.1007/s13399-020-00690-5
  5. Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), 4456. https://doi.org/10.3390/su12114456.
  6. Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S., & Thami Alami, I. (2018). Composting parameters and compost quality: a literature review. Organic agriculture, 8, 141-158. 10.1007/s13165-017-0180-z
  7. Balanda, O., Serafinowska, D., Marchenko, O., Svystunova, I. (2022). Innovative Technology of Accelerated Composting of Chicken Manure to Obtain an Organic Fertilizer with a High Content of Humic Acids. Agricultural Engineering, 26(1) 133-144. https://doi.org/10.2478/agriceng-2022-0011
  8. Baron, V., Saoud, M., Jupesta, J., Praptantyo, I. R., Admojo, H. T., Bessou, C., & Caliman, J. P. (2019). Critical parameters in the life cycle inventory of palm oil mill residues composting. Indonesian Journal of Life Cycle Assessment and Sustainability, 3(1), https://doi.org/10.52394/ijolcas.v3i1.72
  9. Barrón-Santos, F. J., Gutiérrez-Castillo, M. E., Tovar-Gálvez, L. R., Teresa, M., Núñez-Cardona, R. E. N., Tapia, C. R., & Espitia-Cabrera, A. (2021). Improving Compost Process Efficiency by Leachates Inoculation and Shredding of the Organic Fraction of Municipal Solid Waste at Bordo Poniente Composting Plant, Mexico City. Journal of Environmental Science and Engineering, 10, 177-183. 10.17265/2162-5298/2021.05.003
  10. Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9.
  11. Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production–A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and sustainable Energy reviews, 90, 570-582. https://doi.org/10.1016/j.rser.2018.03.093
  12. Bojarski, W., Czekała, W., Nowak, M., & Dach, J. (2023). Production of compost from logging residues. Bioresource Technology, 376, 128878. https://doi.org/10.1016/j.biortech.2023.128878
  13. Borek, K., & Romaniuk, W. (2020a). Biogas installations for harvesting energy and utilization of natural fertilisers. Agricultural Engineering, 24(1), 1-14. https://doi.org/10.1515/agriceng-2020-0001
  14. Borek, K., & Romaniuk, W. (2020b). Possibilities of obtaining renewable energy in dairy farming. Agricultural Engineering, 24(2), 9-20. https://doi.org/10.1515/agriceng-2020-0012
  15. Borek, K., Romaniuk, W., Roman, K., Roman, M., & Kuboń, M. (2021). The Analysis of a Prototype Installation for Biogas Production from Chosen Agricultural Substrates. Energies 2021, 14(8), 2132. https://doi.org/10.3390/en14082132
  16. Cáceres, R., Malińska, K., & Marfà, O. (2018). Nitrification within composting: A review. Waste Management, 72, 119-137. https://doi.org/10.1016/j.wasman.2017.10.049
  17. Cecchi, F., & Cavinato, C. (2015). Anaerobic digestion of bio-waste: A mini-review focusing on territorial and environmental aspects. Waste Management & Research, 33(5), 429-438. https://doi.org/10.1177/0734242X14568610
  18. Cerda, A., Artola, A., Font, X., Barrena, R., Gea, T., & Sánchez, A. (2018). Composting of food wastes: Status and challenges. Bioresource technology, 248, 57-67. https://doi.org/10.1016/j.biortech.2017.06.133
  19. Chang, H. Q., Zhu, X. H., Wu, J., Guo, D. Y., Zhang, L. H., & Feng, Y. (2021). Dynamics of microbial diversity during the composting of agricultural straw. Journal of Integrative Agriculture, 20(5), 1121-1136. https://doi.org/10.1016/S2095-3119(20)63341-X
  20. Czekała, W. (2021). Solid Fraction of Digestate from Biogas Plant as a Material for Pellets Production. Energies, 14(16), 5034. https://doi.org/10.3390/en14165034
  21. Czekała, W. (2022). Digestate as a Source of Nutrients: Nitrogen and Its Fractions. Water, 14(24), 4067. https://doi.org/10.3390/w14244067
  22. Czekała, W., Nowak, M., & Bojarski, W. (2023). Characteristics of Substrates Used for Biogas Production in Terms of Water Content. Fermentation, 9(5), 449. https://doi.org/10.3390/fermentation9050449
  23. Czekała, W., Janczak, D., Pochwatka, P., Nowak, M., & Dach, J. (2022). Gases Emissions during Composting Process of Agri-Food Industry Waste. Applied Sciences, 12, 9245. https://doi.org/10.3390/app12189245
  24. Dach, J., Pulka, J., Janczak, D., Lewicki, A., Pochwatka, P., & Oniszczuk, T. (2020). Energetic Assessment of Biogas Plant Projects Based on Biowaste and Maize Silage Usage. In IOP Conference Series: Earth and Environmental Science, 505(1), 012029. https://doi.org/10.1088/1755-1315/505/1/012029
  25. Dalahmeh, S. S., Thorsén, G., & Jönsson, H. (2022). Open-air storage with and without composting as post-treatment methods to degrade pharmaceutical residues in anaerobically digested and de-watered sewage sludge. Science of the Total Environment, 806, 151271. https://doi.org/10.1016/j.scitotenv.2021.151271
  26. Demichelis, F., Piovano, F., & Fiore, S. (2019). Biowaste management in Italy: Challenges and perspectives. Sustainability, 11(15), 4213. https://doi.org/10.3390/su11154213
  27. Enebe, M. C., & Erasmus, M. (2023). Mediators of biomass transformation–a focus on the enzyme composition of the vermicomposting process. Environmental Challenges, 12, 100732. https://doi.org/10.1016/j.envc.2023.100732
  28. Ge, M., Shen, Y., Ding, J., Meng, H., Zhou, H., Zhou, J., Cheng, H., Zhang, X., Wang, J., Wang, H., Cheng, Q., Li, R., & Liu, J. (2022). New insight into the impact of moisture content and pH on dissolved organic matter and microbial dynamics during cattle manure composting. Bioresource Technology, 344, 126236. https://doi.org/10.1016/j.biortech.2021.126236
  29. Ghosh, S. K. (2016). Biomass & bio-waste supply chain sustainability for bio-energy and bio-fuel production. Procedia Environmental Sciences, 31, 31-39. https://doi.org/10.1016/j.proenv.2016.02.005
  30. Glivin, G., Kalaiselvan, N., Mariappan, V., Premalatha, M., Murugan, P. C., & Sekhar, J. (2021). Conversion of biowaste to biogas: A review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel, 302, 121153. https://doi.org/10.1016/j.fuel.2021.121153
  31. Główny Urząd Statystyczny. (2018). Ochrona środowiska 2018. Warszawa: Wydawnictwo GUS.
  32. Główny Urząd Statystyczny. (2019). Ochrona środowiska 2019. Warszawa: Wydawnictwo GUS.
  33. Główny Urząd Statystyczny. (2020). Ochrona środowiska 2020. Warszawa: Wydawnictwo GUS.
  34. Główny Urząd Statystyczny. (2021). Ochrona środowiska 2021. Warszawa: Wydawnictwo GUS.
  35. Główny Urząd Statystyczny. (2022). Ochrona środowiska 2022. Warszawa: Wydawnictwo GUS.
  36. Graça, J., Murphy, B., Pentlavalli, P., Allen, C. C., Bird, E., Gaffney, M., Duggan, T., & Kelleher, B. (2021). Bacterium consortium drives compost stability and degradation of organic contaminants in in-vessel composting process of the mechanically separated organic fraction of municipal solid waste (MS-OFMSW). Bioresource Technology Reports, 13, 100621. https://doi.org/10.1016/j.biteb.2020.100621
  37. Haouas, A., El Modafar, C., Douira, A., Ibnsouda-Koraichi, S., Filali-Maltouf, A., Moukhli, A., & Amir, S. (2021). Evaluation of the nutrients cycle, humification process, and agronomic efficiency of organic wastes composting enriched with phosphate sludge. Journal of Cleaner Production, 302, 127051. https://doi.org/10.1016/j.jclepro.2021.127051
  38. Hemidat, S., Jaar, M., Nassour, A., & Nelles, M. (2018). Monitoring of composting process parameters: a case study in Jordan. Waste and Biomass Valorization, 9, 2257-2274. https://doi.org/10.1007/s12649-018-0197-x.
  39. Jakubowski, T., & Sołowiej, P. (2016). Dynamics of temperature changes in thermophille phase of composting process in the aspect of sanitary condition of obtained material. Agricultural Engineering, 20(4), 69-75. https://doi.org/10.1515/agriceng-2016-0065.
  40. Jędrczak, A. (2018). Composting and fermentation of biowaste-advantages and disadvantages of processes. Civil and Environmental Engineering Reports, 28(4), 71-87. https://doi.org/10.2478/ceer-2018-0052.
  41. Keng, Z. X., Chong, S., Ng, C. G., Ridzuan, N. I., Hanson, S., Pan, G. T., Lau, P. L., Supramaniam, C. V., Singh, A., Chin, C. F., & Lam, H. L. (2020). Community-scale composting for food waste: A life-cycle assessment-supported case study. Journal of Cleaner Production, 261, 121220.https://doi.org/10.1016/j.jclepro.2020.121220.
  42. Koryś, K.A., Latawiec, A.E., Grotkiewicz, K., & Kuboń, M. (2019). The Review of Biomass Potential for Agricultural Biogas Production in Poland. Sustainability, 11, 6515. https://doi.org/10.3390/su11226515
  43. Kovačić, Đ., Lončarić, Z., Jović, J., Samac, D., Popović, B., & Tišma, M. (2022). Digestate Management and Processing Practices: A Review. Applied Sciences, 12(18), 9216. https://doi.org/10.3390/app12189216
  44. Kucher, O., Hutsol, T., Glowacki, S., Andreitseva, I., Dibrova, A., Muzychenko, A., Szeląg-Sikora, A., Szparaga, A., & Kocira, S. (2022). Energy Potential of Biogas Production in Ukraine. Energies, 15, 1710. https://doi.org/10.3390/en15051710
  45. Kukharets, S., Hutsol, T., Glowacki, S., Sukmaniuk, O., Rozkosz, A. Tkach, O. (2021). Concept of Biohydrogen Production by Agricultural Enterprises. Agricultural Engineering, 25(1), 63-72. https://doi.org/10.2478/agriceng-2021-0005
  46. Luangwilai, T., Sidhu, H., & Nelson, M. (2021). Understanding the factors affecting the self-heating process of compost piles: Two-dimensional analysis. ANZIAM Journal, 63, C15-C29. https://doi.org/10.21914/anziamj.v63.17119
  47. Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International journal of environmental research and public health, 15(10), 2224. https://doi.org/10.3390/ijerph15102224
  48. Mengqi, Z., Shi, A., Ajmal, M., Ye, L., & Awais, M. (2023). Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting. Biomass Conversion and Biorefinery, 13, 5445-5468. https://doi.org/10.1007/s13399-021-01438-5
  49. Neugebauer, M. (2018). Kitchen and garden waste as a source of heat for greenhouses. Agricultural Engineering, 22(1), 83-93. https://doi.org/10.1515/agriceng-2018-0008.
  50. Obidziński, S., Joka Yildiz, M., Dąbrowski, S., Jasiński, J., & Czekała, W. (2022). Application of Post-Flotation Dairy Sludge in the Production of Wood Pellets: Pelletization and Combustion Analysis. Energies, 15, 9427. https://doi.org/10.3390/en15249427
  51. Pergola, M., Persiani, A., Palese, A. M., Di Meo, V., Pastore, V., D’Adamo, C., & Celano, G. (2018). Composting: The way for a sustainable agriculture. Applied Soil Ecology, 123, 744-750. https://doi.org/10.1016/j.apsoil.2017.10.016.
  52. Qi, H., Zhao, Y., Zhao, X., Yang, T., Dang, Q., Wu, J., Lv, P., Wang, H., & Wei, Z. (2020). Effect of manganese dioxide on the formation of humin during different agricultural organic wastes compostable environments: It is meaningful carbon sequestration. Bioresource technology, 299, 122596. https://doi.org/10.1016/j.biortech.2019.122596.
  53. Shan, G., Li, W., Gao, Y., Tan, W., & Xi, B. (2021). Additives for reducing nitrogen loss during composting: A review. Journal of Cleaner Production, 307, 127308. https://doi.org/10.1016/j.jclepro.2021.127308
  54. Shapovalov, Y., Zhadan, S., Bochmann, G., Salyuk, A., & Nykyforov, V. (2020). Dry anaerobic digestion of chicken manure: A review. Applied Sciences, 10(21), 7825. https://doi.org/10.3390/app10217825
  55. Shi, M., Zhao, Y., Zhu, L., Song, X., Tang, Y., Qi, H., Cao, H., & Wei, Z. (2020). Denitrification during composting: Biochemistry, implication and perspective. International biodeterioration & biodegradation, 153, 105043. https://doi.org/10.1016/j.ibiod.2020.105043.
  56. Sikorska, W., Musioł, M., Rydz, J., Kowalczuk, M., & Adamus, G. (2019). Kompostowanie przemysłowe jako metoda zagospodarowania odpadów z materiałów poliestrowych otrzymywanych z surowców odnawialnych. Polimery, 64(11-12), 818-827. https://doi.org/10.14314/polimery.2019.11.11dx.doi.org/10.14314/polimery.2019.11.11.
  57. Smith, M. M., & Aber, J. D. (2018). Energy recovery from commercial-scale composting as a novel waste management strategy. Applied energy, 211, 194-199. https://doi.org/10.1016/j.apenergy.2017.11.006.
  58. Sołowiej, P., Pochwatka, P., Wawrzyniak, A., Łapiński, K., Lewicki, A., & Dach, J. (2021). The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process. Energies, 2021, 14, 1183. https://doi.org/10.3390/en14041183
  59. Szala, B., & Paluszak, Z. (2008). Wpływ procesu kompostowania bioodpadów w kontenerowej technologii Kneer na inaktywację jaj glist Ascaris suum. Medycyna Weterynaryjna, 64(3), 361-36.
  60. Thirunavukkarasu, A., Nithya, R., Kumar, S. M., Priyadharshini, V., Kumar, B. P., Premnath, P., Sivashankar, R., & Sathya, A. B. (2022). A business canvas model on vermicomposting process: key insights onto technological and economical aspects. Bioresource Technology Reports, 18, 101119. https://doi.org/10.1016/j.biteb.2022.101119.
  61. Uddin, M. N., Siddiki, S. Y. A., Mofijur, M., Djavanroodi, F., Hazrat, M. A., Show, P. L., Ahmed, S. F., Chu, Y. M. (2021). Prospects of bioenergy production from organic waste using anaerobic digestion technology: a mini review. Frontiers in Energy Research, 9, 627093. https://doi.org/10.3389/fenrg.2021.627093
  62. Valverde-Orozco, V., Gavilanes-Terán, I., Idrovo-Novillo, J., Carrera-Beltrán, L., Basantes-Cascante, C., Bustamante, M. A., & Paredes, C. (2023). Agronomic, Economic and Environmental Comparative of Different Aeration Systems for On-Farm Composting. Agronomy, 13(3), 929, https://doi.org/10.3390/agronomy13030929
  63. Vikram, N., Sagar, A., Gangwar, C., Husain, R., & Kewat, R. N. (2022). Properties of humic acid substances and their effect in soil quality and plant health. In A. Makan (Eds.), Humus and humic substances-recent advances. London, UK: IntechOpen. https://doi.org/10.5772/intechopen.105803
  64. Vuković, A., Velki, M., Ečimović, S., Vuković, R., Štolfa Čamagajevac, I., & Lončarić, Z. (2021). Vermicomposting-Facts, benefits and knowledge gaps. Agronomy, 11(10), 1952. https://doi.org/10.3390/agronomy11101952.
  65. Waliszewska, H., Zborowska, M., Stachowiak-Wencek, A., Waliszewska, B., & Czekała, W. (2019). Lignin Transformation of One-Year-Old Plants During Anaerobic Digestion (AD). Polymers, 11(5), 1-10. https://doi.org/10.3390/polym11050835
  66. Weiland, P. (2010). Biogas production: current state and perspectives. Applied microbiology and bio-technology, 85, 849-860. https://doi.org/10.1007/s00253-009-2246-7
  67. Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development, 41, 1-26. https://doi.org/10.1007/s13593-020-00657-w
  68. Zhang, T., Wu, X., Shaheen, S. M., Abdelrahman, H., Ali, E. F., Bolan, N. S., Ok, Y. S., Li, G., Tsang, D. C. W., & Rinklebe, J. (2022a). Improving the humification and phosphorus flow during swine manure composting: a trial for enhancing the beneficial applications of hazardous biowastes. Journal of hazardous materials, 425, 127906. https://doi.org/10.1016/j.jhazmat.2021.127906
  69. Zhang, Y., Chen, M., Guo, J., Liu, N., Yi, W., Yuan, Z., & Zeng, L. (2022)b. Study on dynamic changes of microbial community and lignocellulose transformation mechanism during green waste composting. Engineering in Life Sciences, 22(5), 376-390. https://doi.org/10.1002/elsc.202100102
  70. Zhao, X., Tan, W., Peng, J., Dang, Q., Zhang, H., & Xi, B. (2020). Biowaste-source-dependent synthetic pathways of redox functional groups within humic acids favoring pentachlorophenol dechlorination in composting process. Environment international, 135, 105380. https://doi.org/10.1016/j.envint.2019.105380.
  71. Zhong, X. Z., Li, X. X., Zeng, Y., Wang, S. P., Sun, Z. Y., & Tang, Y. Q. (2020). Dynamic change of bacterial community during dairy manure composting process revealed by high-throughput sequencing and advanced bioinformatics tools. Bioresource technology, 306, 123091. https://doi.org/10.1016/j.biortech.2020.123091
DOI: https://doi.org/10.2478/agriceng-2023-0013 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 173 - 186
Submitted on: Apr 1, 2023
Accepted on: Aug 1, 2023
Published on: Aug 31, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Wojciech Czekała, Mateusz Nowak, Wiktor Bojarski, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.