Have a personal or library account? Click to login
Smartphone-Operated Smart Farm Watering System Using Long-Range Communication Technology Cover

Smartphone-Operated Smart Farm Watering System Using Long-Range Communication Technology

By: Lee Kyung Mog  
Open Access
|Apr 2023

References

  1. Abhiram, M.S.D., Kuppili, J., & Manga, N.A. (2020). Smart Farming System using IoT for Efficient Crop Growth. In 2020 IEEE International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), 22-23 February 2020 (pp. 1-4). IEEE.
  2. Hwang, K., Fox, G.C., & Dongarra, J.J. (2013). Distributed and Cloud Computing from Parallel Processing to the Internet of Things. San Mateo: Elsevier.
  3. Jabro, J.D., Stevens, W.B., Iversen, W.M, Allen, B.L., & Sainju, U.M. (2020). Irrigation Scheduling Based on Wireless Sensors Output and Soil-Water Characteristic Curve in Two Soils, Sensors, 20(5), 1336.
  4. Lee, K.M. (2017). Construction of a Harmful Animals Scaring System Protecting Plantation Farm with Smart Phone Application. International Information Institute (Tokyo). Information, 20(9A), 6277-6285.
  5. Lee, K.M. (2019). Implementation of a Smart Phone Application Controlling Agricultural Chemical Spray System with Bluetooth Communication. Information: an international Interdisciplinary Journal, 22(2), 85-93.
  6. Lee, K.M., (2018). Design of a Smart Phone Application Controlling Agricultural Watering System with a Drone. In Lecture Notes in Engineering and Computer Science: Proceedings of The World Congress on Engineering, 25-27 October 2018 (pp. 30-32) San Francisco, USA: International Association Engineers.
  7. Lee, K.M., (2022a). Distributed Computing Agriculture Water Spraying System Using LORA Communication. In 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET), 20-22 July 2022 (pp. 1-5). IEEE.
  8. Lee, K.M., (2022b). Application of the LORA Communication Technology to a Drone Monitoring and Chemical Spraying System on Agriculture Field. International Information Institute (Tokyo). Information, 5(4), 245-260.
  9. Mah, S.H., & Kim, B.S., (2019). Lo-Ra Technology Analysis and LoRa Use Case Analysis By Country. The Journal of The Institute of Internet, Broadcasting and Communication, 19(1), 15-20.
  10. Millán, S., Campillo, C., Casadesús, J., Pérez Rodríguez, J.M., & Prieto, M.H., (2020). Automatic Irrigation Scheduling on a Hedgerow Olive Orchard Using an Algorithm of Water Balance Readjusted with Soil Moisture Sensors. Sensors, 20(9), 2526.
  11. Othman, M.M., Ishwarya, K.R., Ganesan, M., & Loganathan, G.B. (2021). A Study on Data Analysis and Electronic Application for the Growth of Smart Farming. Alinteri Journal of Agriculture Sciences, 36(1), 209-218.
  12. Placidi, P., Gasperini, L., Grassi, A., Cecconi, M., & Scorzoni, A., (2020). Characterization of Low-Cost Capacitive Soil Moisture Sensors for IoT Networks. Sensors, 20(12), 3585.
  13. Sharmrat, F.M.J.M., Md Asaduzzaman, Ghosh, P., Md Sultan, D., & Tasmin, Z., (2020). A Web Based Application for Agriculture: “Smart Farming System”. International Journal of Emerging Trends in Engineering Research, 8(6), 2309-2320.
  14. Sivabalan, K.N., Anandkumar, V., & Balakrishnan, S., (2020). IOT Based Smart Farming for Effective Utilization of Water and Energy. International Journal of Advanced Science and Technology, 29(7s), 2496-2500.
  15. Tagarakis, A.C, Dordas, C., Lampridi, M., Kateris, D., & Bochtis, D., (2021). A Smart Farming System for Circular Agriculture. Engineering Proceedings, 9(1), 10.
DOI: https://doi.org/10.2478/agriceng-2023-0005 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 59 - 74
Submitted on: Nov 1, 2022
Accepted on: Jan 1, 2023
Published on: Apr 16, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Lee Kyung Mog, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.