Have a personal or library account? Click to login
Numerical Simulation of Soil Water Dynamics in Automated Drip Irrigated Okra Field Under Plastic Mulch Cover

Numerical Simulation of Soil Water Dynamics in Automated Drip Irrigated Okra Field Under Plastic Mulch

Open Access
|Jan 2023

References

  1. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  2. Autovino, D., Rallo, G., and Provenzano, G. (2018). Predicting soil and plant water status dynamic in olive orchards under different irrigation systems with Hydrus-2D: Model performance and scenario analysis. Agricultural water management, 203, 225-235.
  3. Azad, N., Behmanesh, J., Rezaverdinejad, V., Abbasi, F., and Navabian, M. (2018). Developing an optimization model in drip fertigation management to consider environmental issues and supply plant requirements. Agricultural water management, 208, 344-356.
  4. Cammalleri, C., Rallo, G., Agnese, C., Ciraolo, G., Minacapilli, M. and Provenzano, G. (2013). Combined use of eddy covariance and sap flow techniques for partition of ET fluxes and water stress assessment in an irrigated olive orchard. Agricultural Water Management, 120, 89-97. http://dx.doi.org/10.1016/j.agwat.2012.10.003.
  5. Dhawan, V. (2017). Water and agriculture in India: background paper for the South Asia expert panel during the Global Forum for Food and Agriculture (GFFA). Hamburg, OAV – German Asia-Pacific Business Association.
  6. Ebrahimian, H., Liaghat, A., Parsinejad, M., Playán, E., Abbasi, F., and Navabian, M. (2013). Simulation of 1D surface and 2D subsurface water flow and nitrate transport in alternate and conventional furrow fertigation. Irrigation Science, 31(3), 301-316.
  7. Enciso, J.M., Jifon, J., and Wiedenfeld, B. (2007). Subsurface drip irrigation of onions: effects of drip tape emitter spacing on yield and quality. Agricultural Water Management 92(3), 1-7.
  8. Feddes, R.A. (1982). Simulation of field water use and crop yield. In Simulation of plant growth and crop production. Pudoc, pp. 194-209.
  9. Ghazouani, H., Autovino, D., Rallo, G., Douh, B., and Provenzano, G. (2016). Using Hydrus-2D model to assess the optimal drip lateral depth for Eggplant crop in a sandy loam soil of central Tunisia. Italian Journal of Agrometeorology, 1, 47-58.
  10. Han, M., Zhao, C., Šimůnek, J., and Feng, G. (2015). Evaluating the impact of groundwater on cotton growth and root zone water balance using Hydrus-1D coupled with a crop growth model. Agricultural Water Management, 160, 64-75.
  11. Jones, H.G. (2004). Irrigation scheduling: advantages and pitfalls of plant-based methods. Journal of experimental botany, 55(407), 2427-2436.
  12. Kandelous, M. M., Šimůnek, J., Van Genuchten, M. T., and Malek, K. (2011). Soil water content distributions between two emitters of a subsurface drip irrigation system. Soil Science Society of America Journal, 75(2), 488-497.
  13. Kisekka, I., Migliaccio, K.W., Dukes, M.D., Schaffer, B., and Crane, J.H. (2010). Real-timeevapotranspiration- based irrigation scheduling and physiological response in a carambola (Averhoha carambola) orchard. Applied Engineering in Agriculture, 26(3), 373-380.
  14. Lozoya, C., Mendoza, C., Aguilar, A., Román, A., and Castelló, R. (2016). Sensor-based model driven control strategy for precision irrigation. Journal of Sensors, 9784071.
  15. Mailhol, J.C., Ruelle, P., Walser, S., Schütze, N., and Dejean, C. (2011). Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D. Agricultural Water Management, 98, 1033-1044.
  16. Mei-Xian, L.I.U., Jing-Song, Y.A.N.G., Xiao-Ming, L.I., Mei, Y.U., and Jin, W.A.N.G. (2013). Numerical simulation of soil water dynamics in a drip irrigated cotton field under plastic mulch. Pedosphere, 23(5), 620-635.
  17. Minacapilli, M., Agnese, C., Blanda, F., Cammalleri, C., Ciraolo, G., D’Urso, G., Iovino, M., Pumo, D., Provenzano, G., and Rallo, G. (2009). Estimation of actual evapotranspiration of Mediterranean perennial crops by means of remote-sensing based surface energy balance models. Hydrology and Earth System Sciences, 13(7), 1061-1074.
  18. Mun˜oz-Carpena, R., Dukes, M.D., Li, Y., and Klassen, W. (2005). Field comparison of tensiometer and granular matrix sensor automatic drip irrigation on tomato. HortTechnology, 15 (3), 584–590.
  19. Radcliffe, D. E., and Simunek, J. (2018). Soil physics with HYDRUS: Modeling and applications. CRC press.
  20. Rallo, G., Agnese, C., Blanda, F., Minacapilli, M., and Provenzano, G. (2010). Agro- Hydrological models to schedule irrigation of Mediterranean tree crops. Italian Journal of Agrometeorology, 1, 11-21.
  21. Rallo, G., Agnese, C., Minacapilli, M., and Provenzano, G. (2012). Comparison of SWAP and FAO agro-hydrological models to schedule irrigation of wine grape. Journal of Irrigation and Drainage Engineering, 138(1).
  22. Rallo, G., González-Altozano, P., Manzano-Juárez, J., and Provenzano, G. (2017). Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation. Agricultural water management, 180, 136-147.
  23. Ranjbar, A., Rahimikhoob, A., Ebrahimian, H., and Varavipour, M. (2019). Simulation of nitrogen uptake and distribution under furrows and ridges during the maize growth period using HYDRUS- 2D. Irrigation Science, 37(4), 495-509.
  24. Richards, L.A. (1931). Capillary conduction of liquids through porous mediums. Physics, 1, 318-333.
  25. Ritchie, J.T. (1972). A model for predicting evaporation from a row crop with incomplete cover. Water research, 8, 1204-1213.
  26. Šimůnek, J., Šejna, M., and van Genuchten, M.Th. (1999). The Hydrus-2D Software Package for Simulating Two-dimensional Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media. Version 2.0, IGWMC − TPS − 53. International Ground Water Modeling Center, Colorado School of Mines Golden, Colorado 251pp.
  27. Šimůnek, J., Šejna, M., and van Genuchten, M.Th. (2016). Recent developments and applicationsof the Hydrus computer software packages. Vadose Zone Journal, 1-25.
  28. Skaggs, T.H., Trout, T.J., Šimůnek, J., and Shouse, P. J. (2004). Comparison of HYDRUS-2D simulations of drip irrigation with experimental observations. Journal of irrigation and drainage engineering, 130(4), 304-310.
  29. Thompson, R.B., Gallardo, M., Valdez, L.C., and Fernandez, M.D. (2007). Determination of lower limits for irrigation management using in situ assessments of apparent crop water uptake made with volumetric soil water content sensors. Agricultural Water Management 92, 13-28.
  30. Vrugt, J. A., Hopmans, J. W., and Šimunek, J. (2001). Calibration of a two-dimensional root water uptake model. Soil Science Society of America Journal, 65(4), 1027-1037.
DOI: https://doi.org/10.2478/agriceng-2023-0002 | Journal eISSN: 2449-5999 | Journal ISSN: 2083-1587
Language: English
Page range: 11 - 32
Submitted on: Oct 1, 2022
Accepted on: Dec 1, 2022
Published on: Jan 31, 2023
Published by: Polish Society of Agricultural Engineering
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2023 Vidya K. Nagaraju, Karuppalaki Nagarajan, Balaji Kannan, Subbiah Ramanathan, Ramasamy Duraisamy, published by Polish Society of Agricultural Engineering
This work is licensed under the Creative Commons Attribution 4.0 License.