References
- Ahmad, P. (2010). Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to the combined effect of gibberellic acid and salinity. Archives of Agronomy and Soil Science, 56, 575 – 588. DOI:10.1080/03650340903164231.
- Akhtar, N., Karim, A., Afrin, S., and Hossain, F. (2021). Effects of gibberellic acid and kinetin on germination and ion accumulation in a Bangladesh wheat variety under salt stress conditions. European Journal of Biophysics, 9(2), 86 – 91. DOI:10.11648/j.ejb.20210902.15.
- Akter, N., Islam, M. R ., Karim, M. A ., and Hossain, T. (2014). Alleviation of drought stress in maize by exogenous application of gibberellic acid and cytokinin. Journal of Crop Science and Biotechnology, 17(1), 41 – 48. DOI:10.1007/s12892-013-0117-3.
- Anonymous (2023). BWMRI Annual Report 2022-23. Bangladesh Wheat and Maize Research Institute (BWMRI), Nashipur, Dinajpur 5200, 19 September 2023. Retrieved from https://bwmri.portal.gov.bd/sites/default/files/files/bwmri.portal.gov.bd/go_ultimate/006f3.pdf.
- Anonymous (2025). World Agricultural Production. United States Department of Agriculture (USDA). Circular Series WAP. Retrieved from https://apps.fas.usda.gov/psdonline/circulars/production.pdf
- Atta, K., Mondal, S., Gorai, S., Singh, A. P., Kumari, A., Ghosh, T., Roy, A., Hembram, S., Gaikwad, D. J., Mondal, S., Bhattacharya, S., Jha, U. C., and Jespersen, D. (2023). Impacts of salinity stress on crop plants: Improving salt tolerance through genetic and molecular dissection. Frontiers in Plant Science, 14, 1241736. DOI:10.3389/fpls.2023.1241736.
- Chauhan, A., Rajput, N., Kumar, A., Verma, J. S ., and Chaudhry, A. K. (2018). Interactive effects of gibberellic acid and salt stress on growth parameters and chlorophyll content in oat cultivars. Journal of Environmental Biology, 39(5), 639 – 646. DOI:10.22438/jeb/39/5/mrn-615.
- de la Reguera, E., Veatch, J., Gedan, K., and Tully, K. L . (2020). The effects of saltwater intrusion on germination success of standard and alternative crops. Environmental and Experimental Botany, 180, 104254. DOI:10.1016/j.envexpbot.2020.104254.
- El-Nwehy, S. S. and Afify, R. R. M. (2023). Utilization of gibberellic acid (GA3) and mepiquat chloride (MC) as growth regulators on maize to alleviate salinity stress. SABRAO Journal of Breeding and Genetics, 55(5), 1654 – 1665. DOI:10.54910/sabrao2023.55.5.18.
- Fu, J., Li, L., Wang, S., Yu, N., Shan, H., Shi, Z., Li, F., and Zhong, X. (2023). Effect of gibberellic acid on photosynthesis and oxidative stress response in maize under weak light conditions. Frontiers in Plant Science, 14, 1128780. DOI:10.3389/fpls.2023.1128780.
- Geilfus, C. M ., Zörb, C. and Mühling, K. H . (2010). Salt stress differentially affects growth-mediating β-expansins in resistant and sensitive maize (Zea mays L.). Plant Physiology and Biochemistry, 48(12), 993 – 998. DOI:10.1016/j.plaphy.2010.09.011.
- Gill, S. S ., Anjum, N. A ., Hasanuzzaman, M., Gill, R., Trivedi, D. K., Ahmad, I., Pereira, E., and Tuteja, N. (2013). Glutathione and glutathione reductase: A boon in disguise for plant abiotic stress defense operations. Plant Physiology and Biochemistry, 70, 204 – 212. DOI:10.1016/j.plaphy.2013.05.032.
- Hamza, J. H. and Ali, M. K. M. (2017). Effect of seed soaking with GA3 on emergence and seedling growth of corn under salt stress. Iraqi Journal of Agricultural Sciences, 48(3), 650 – 659. DOI:10.36103/ijas.v48i3.377.
- Hütsch, B. W., Saqib, M., Osthushenrich, T., and Schubert, S. (2014). Invertase activity limits grain yield of maize under salt stress. Journal of Plant Nutrition and Soil Science, 177(2), 278 – 286. DOI:10.1002/jpln.201300345.
- Islam, M. S., Islam, M. R., Hasan, M. K., Hafeez, A. S. M. G., Chowdhury, M. K., Pramanik, M. H ., Iqbal, M. A ., Erman, M., Barutcular, C., Konuşkan, Ö., Dubey, A., Kumar, A., and El Sabagh, A. (2024). Salinity stress in maize: Consequences, tolerance mechanisms, and management strategies. OBM Genetics, 8(2), 1 – 41. DOI:10.21926/obm.genet.2402232.
- Nasrin, S. and Mannan, M. A . (2019). Impact of salinity on seed germination and seedling growth of tomato. Journal of Science Technology and Environment Informatics, 21(1), 1737 – 1748. DOI:10.18801/jbar.210119.212.
- Rasheed, M. A ., Hassan, A., Mehr, P., Shah, A., Ansar, M., Bilal, M., and Mehr, A. P. (2021). Exogenously applied gibberellic acid improves growth of fodder maize under drought stress. Journal of Agricultural Research, 59(4), 353 – 359. https://www.researchgate.net/publication/358046521.
- Rastogi, A., Siddiqui, A., Mishra, B. K., Srivastava, M., Pandey, R., Misra, P., Singh, M., and Shukla, S. (2013). Effect of auxin and gibberellic acid on growth and yield components of linseed (Linum usitatissimum L.). Crop Breeding and Applied Biotechnology, 13(2), 136 – 143. https://www.scielo.br/j/cbab/a/ntyRPkCdBbTdLwBscNqYWKC.
- Rauf, F., Ullah, M. A ., Kabir, M. H ., Mia, M. A ., and Rhaman, M. S . (2022). Gibberellic acid enhances the germination and growth of maize under salinity stress. Asian Plant Research Journal, 10(3), 5 – 15. DOI:10.9734/aprj/2022/v10i3191.
- Saade, S., Maurer, A., Shahid, M., Oakey, H., Schmöckel, S. M ., Negrão, S., Pillen, K., and Tester, M. (2016). Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Scientific Reports, 6, 1 – 9. DOI:10.1038/srep32586.
- Sarkar, A. Z., Ahmed, S., Akhter, M. M ., Khan, A. A ., Alam, M. N., Islam, S., Mahmud, T., and Kumar, S. (2023). BWMRI Annual Report 2022 – 23. Bangladesh Wheat and Maize Research Institute Nashipur, Dinajpur, 78p.
- Shahid, S. A ., Zaman, M. and Heng, L. (2018). Introduction to soil salinity, sodicity and diagnostics techniques. In Zaman, M., Shahid, S. A . and Heng, L. (Eds.) Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, 1st ed. Cham: Springer, pp. 1 – 42. DOI:10.1007/978-3-319-96190-3_1.
- Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E. A., Zamir, S., Saddique, M., Rauf, A., Kamal, K. Y., Hano, C., and El-Esawi, M. A . (2021). Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules, 11(7), 1005. DOI:10.3390/biom11071005.
- Toderich, K. and Tsunekawa, A. (2021). Integrated crop and soil solutions in rehabilitation and sustainable management of salt-affected soils. Global Symposium on Salt-Affected Soils (GSAS-21). www.fao.org/land-water/overview/wasag.
- Waleed A. E., Abido, A., Allem, A., Zsombic, L., and Attila, N. (2019). Effect of gibberellic acid on germination of six wheet cultivars under salinity stress levels. Asian Journal of Biological Science, 12, 51 – 60. https://scialert.net/abstract/?doi=ajbs.2019.51.60.
- Yu, Z., Duan, X., Luo, L., Dai, S., Ding, Z., and Xiz, G. (2020). How plant hormones mediate salt stress responses. Trends in Plant Science, 25(11), 1117 – 1130. DOI:10.1016/j.plants2020.06.008.
- Zamani, E., Bakhtari, B., Razi, H., Hildebrand, D., Moghadam, A., and Alemzadeh, A. (2024). Comparative morphological, physiological, and biochemical traits in sensitive and tolerant maize genotypes in response to salinity and Pb stress. Scientific Reports, 14(1), 1 – 17. DOI:10.1038/s41598-024-82173-5.
- Zhao, K. F., Song, J., Fan, H., Zhou, S., and Zhao, M. (2010). Growth response to ionic and osmotic stress of NaCl in salt-tolerant and salt-sensitive maize. Journal of Integrative Plant Biology, 52(5), 468 – 475. DOI:10.1111/j.1744-7909.2010.00947.x.
- Zhao, X., Joo, J. C., Kim, D., Lee, J., and Kim, J. Y. (2016). Estimation of the seedling vigor index of sunflowers treated with various heavy metals. Journal of Bioremediation and Biodegradation, 7(3), 1 – 6. DOI:10.4172/2155-6199.1000353.
- Zhu, G., An, L., Jiao, X., Chen, X., Zhou, G., and McLaughlin, N. (2019). Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chilean Journal of Agricultural Research, 79(3), 415 – 424. DOI:10.4067/S0718-58392019000300415.