Have a personal or library account? Click to login
Effect of Soil-Applied Humic Amendment on Photosynthesis Rate and Lycopene Content of Tomato Solanum lycopersicum L. Seven Landraces, Involving Newly Characterised ‘Zemplínskyʼ Cover

Effect of Soil-Applied Humic Amendment on Photosynthesis Rate and Lycopene Content of Tomato Solanum lycopersicum L. Seven Landraces, Involving Newly Characterised ‘Zemplínskyʼ

Open Access
|Dec 2025

References

  1. Arnanda, Q. P. and Nurwarda, R. F. (2019). Penggunaan radio-farmaka Teknesium-99M dari senyawa glutation dan senyawa flavonoid sebagai deteksi dini radikal bebas pemicu kanker [Use of Technetium-99M radiopharmaceuticals from glutathione compounds and flavonoid compounds as early detection of cancer]. Farmaka, 17(2), 236 – 243. DOI:10.24198/jf.v17i2.22071.g11642.
  2. Balogh, J. (2014). The Evaluation of competitiveness of the hungarian wine sector. Tér – Gazdaság –Ember, 2(1), 33 – 46.
  3. Biermann, R. T., Bach, L. T, Kläring, H. P, Baldermann, S., Börnke, F., and Schwartz, D. (2022). Discovering tolerance – a computational approach to assess abiotic stress tolerance in tomato under greenhouse conditions. Frontiers in Sustainable Food Systems, 64(7), 6:878013. DOI:10.3389/fsufs.2022.878013.
  4. Boziné-Pullai, K., Csambalik, L., Drexler, D., Reiter, D., Tóth, F., Bogdányi, F., and Ladányi, M. (2021). Tomato landraces are competitive with commercial varieties in terms of tolerance to plant pathogens-a case study of Hungarian gene bank accessions on organic farms. Diversity, 13(5), 195. DOI:10.3390/d13050195.
  5. Brochot, A. (2021). S’appuyer sur la tradition pour renaître, innover pour résister: du vin de Tokaj aux vins de Tokaj. Revue de Géographie Historique, 19 – 20. DOI:10.4000/geohist.2482.
  6. Cseperkálóné Mirek, B., Reite, D., Divéky-Ertsey, A., and Drexler, D. (2015). On-farm assessment of landrace of tomato (Lycopersicon esculentum L.) under organic conditions in Hungary. Acta Fytotechnica et Zootechnica, 18(Special Issue), 134 – 137. DOI:10.15414/afz.2015.18.si.134-137.
  7. Cox, S. E., Stushnoff, C. and Sampson, D. A. (2003). Relationship of fruit color and light exposure to lycopene content and antioxidant properties of tomato. Canadian Journal of Plant Science, 83(4), 913 – 919. DOI:10.4141/P03-041.
  8. Divéky-Ertsey, A., Ladányi, M., Biró, B., Máté, M., Drexler, D., Tóth, F., Boziné-Pullai, K., Gere, A., Pusztai, P., and Csambalik, L. (2022). Tomato landraces may benefit from protected production - evaluation on phytochemicals. Horticulturae, 8(10), 937. DOI:10.3390/horticulturae8100937.
  9. Dong, H., Li, F., Xuan, X., Ahiakpa, J. K., Tao, J., Zhang, X., Ge, P., Wang, J., Gai, W. X., and Zhang, Y. (2024). The genetic basis and improvement of photosynthesis in tomato. Horticultural Plant Journal, 11, 69 – 84. DOI:10.1016/j.hpj.2023.06.007.
  10. Dorais, M., Ehret, D. L. and Papadopoulos, A. P. (2008). Tomato (Solanum lycopersicum) health components: from the 521 seed to the consumer. Phytochemistry Reviews, 7(2), 231 – 250. DOI:10.1007/s11101-007-9085-x.
  11. Dreuw, A., Fleming, G. R., Head-Gordon, M. (2005). Role of electron-transfer quenching of chlorophyll fluorescence by carotenoids in non-photochemical quenching of green plants. Biochemical Society Transactions, 33(4), 858 – 62. DOI:10.1042/BST0330858. .
  12. Dumas, Y., Dadomo, M., Di Lucca, G., and Grolier, P. (2003). Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. Journal of the Science of Food and Agriculture, 83(5), 369 – 382. DOI:10.1002/jsfa.1370.
  13. Erdoğan, Ü. and Erkaymaz, T. (2024). Determination of in vitro antioxidant activities, total lycopene and carotenoid contents of tomato (Lycopersicum esculentum) products. In Proceedings from 7th International Conferences on Science and Technology, Durres Albania, pp. 95 – 99.
  14. Farinon, B., Picarella, M. and Mazzucato, A. (2022). Dynamics of fertility-related traits in tomato landraces under mild and severe heat stress. Plants, 11(7), 881. DOI:10.3390/plants11070881.
  15. Fish, W. W., Perkin, P. and Collins, J. K. (2002). A quantitative assay for lycopene that utilizes reduced volumes of organic solvents. Journal of Food Composition and Analysis, 15(3), 309 – 317. DOI:10.1006/jfca.2002.1069.
  16. Food and Agriculture Organization of the United Nations (FAO) (2018). Plant Variety Database. Available at: https://food.ec.europa.eu/plants_en.
  17. Fullana-Pericàs, M., Conesa, M. À., Douthe, C., El Aou-ouad H., Ribas-Carbó, M., and Galmés, J. (2019). Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agricultural Water Management, 223, 105722. DOI:10.1016/j.agwat.2019.105722.
  18. Giorio, P., Guida, G., Mistretta, C., Sellami, M., Oliva, M., Punzo, P., Iovieno, P., Arena, C., Maio, A., Grillo, S., and Albrizio, R. (2018). Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. Journal of Plant Biology, 20(6), 995 – 1004. DOI:10.1111/plb.12891.
  19. Helyes, L., Lugasi, A. and Pék, Z. (2007). Effect of natural light on surface temperature and lycopene content of vine ripened tomato fruit. Canadian Journal of Plant Science, 87(4), 927 – 929. DOI:10.4141/CJPS07022.
  20. Hodúr, C., Csanádi, J. and László, Z. (2016). Tokaji Aszú: “The wine of kings, the king of wines”. In Kristbergsson, K. and Oliveira, J. (Eds.) Traditional Foods. Integrating Food Science and Engineering Knowledge Into the Food Chain, vol. 10. Boston, MA: Springer, pp. 319 – 323. DOI:10.1007/978-1-4899-7648-2_25.
  21. Hrivňáková, K., Makovníková, J., Barančíková, G., Bezák, P., Bezákova, Z., Dodok, R., Greco, V., Chlpík, J., Kobza, J., Listjak, M., Mališ, J., Píš, V., Schlosserová, J., Slávik, O., and Širáň, M. (2011). A uniform Workflows Analysis of Soils. Bratislava: Soil Science and Conservation Research Institute, 136p. (in Slovak) ISBN 978-80-89128-89-1.
  22. ISO 10390 (2005). Soil Quality – Determination of pH. IOS, Geneva. 2005, 7.
  23. ISO 14235 (1998). Soil Quality – Determination of Organic Carbon by Sulfochromic Oxidation. Geneva: IOS, 5 p.
  24. Koenig, D., Jiménez-Gómez, J. M., Kimura, S., Fulop, D., Chit-wood, D. H., Headland, L. R., Kumar, R., Covington, M. F., Devisetty, U. K., Tat, A. V., Tohge, T., Bolger, A., Schneeberger, K., Ossowski, S., Lanz, Ch., Xiongi, G., Taylor-Teeples, M., Brady, S. M., Paulyi, M., Weigel, D., Usadel, B., Fernie, A. R., Peng, J., Sinha, N., and Maloof, J. N. (2013). Comparative transcriptomics reveals patterns of selection in domesticated and wild tomato. In Proceeding of the National Academy of Science of the United States of America, 110(28), 2655 – 2662. DOI:10.1073/pnas.1309606110.
  25. Maffia, A., Oliva, M., Marra, F., Mallamaci, C., Nardi, S., and Muscolo, A. (2025). Humic substances: bridging ecology and agriculture for a greener future. Agronomy, 15(2), 410. DOI:10.3390/agronomy15020410.
  26. Magdaong, N. C. M. and Blankenship, R. E. (2018). Photoprotective, excited-state quenching mechanisms in diverse photosynthetic organisms. Journal of Biological Chemistry, 293(14), 5018 – 5025. DOI:10.1074/jbc.TM117.000233.
  27. Maioli, A., De Marchi, F., Valentin, D., Gianoglio, S., Patono, D., Miloro, F., Bai, Y., Comin, C., Lanteri, S., Lovisolo, C., Acquadro, A., and Moglia, A. (2023). New insights on the role of SlDMR6-1 in drought avoidance in tomato. BioRxiv. DOI:10.1101/2023.12.14.571645.
  28. Maxim, A., Albu, V. C., Vodnar, D. C., Mihăiescu, T., Mang, Ș. M, Camele, I., Trotta, V., Bonomo, M. G., Mihalescu, L., Sandor, M., Ranga, F., and Borsai, O. (2023). Assessment of tomato (Solanum lycopersicum) landraces for their agronomic, biochemical characteristics and resistance to Phytophthora infestans. Agronomy, 13(1), 21. DOI:10.3390/agronomy13010021.
  29. Mehlich, A. (1984). Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Communication in Soil Science and Plant Analysis, 1984(15), 1409 – 1416.
  30. Mendelová, A., Mendel, Ľ., Fikselová, M., and Czako, P. (2013). Effect of drying temperature on lycopene content of processed tomatoes. Potravinárstvo, 7(1). DOI:10.5219/300.
  31. Nardi, S., Schiavon, M., Muscolo, A., Pizzeghello, D., Ertani, A., Canellas, L. P, and Garcia-Mina, J. M. (2024). Editorial: Molecular characterization of humic substances and regulatory processes activated in plants, vol. II. Frontiers in Plant Science, 15, 1413829. DOI:10.3389/fpls.2024.1413829 .
  32. Olaetxea, M., De Hita Mejía, D., Garcia, A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A. M., Berbara, R. L., and Garcia-Mina, J. M. (2018). Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot-growth. Applied Soil Ecology, 123, 521 – 537. DOI:10.1016/j.apsoil.2017.06.007.
  33. Pompeiano, A., Moles, T. M., Mariotti, L., Santaniello, A., Di Baccio, D., Scartazza, A., Huarancca Reyes T., Guglielminetti, L. (2025). Tomato biodiversity reveals land-race enhanced drought-adaptive strategy. Plant Physiology and Biochemistry, 220, 109495. DOI:10.1016/j.plaphy.2025.109495
  34. Raggi, L., Pacicco, L. C., Caproni, L., álvarez-Muñiz, C., Annamaa, K., Barata, A. M., Batir-Rusu, D., Díez, M. J., Heinonen, M., Holubec, V., Kell, S., Kutnjak, H., Maierhofer, H., Poulsen, G., Prohens, J., Ralli, P., Rocha, F., Rubio Teso M. L., Sandru, D., Santamaria, P., Sensen, S., Shoemark, O., Soler, S., Sträjeru, S., Thormann, I., Weibull, J., Macted, N., and Negri, V. (2022). Analysis of landrace cultivation in Europe: A means to support in situ conservation of crop diversity. Biological Conservation, 267, 109460. DOI:10.1016/j.biocon.2022.109460.
  35. Riga, P., Anza, M. and Garbisu, C. (2008). Tomato quality is more dependent on temperature than on photosynthetically active radiation. Journal of the Science of Food and Agriculture, 88, 158 – 166. DOI:10.1002/jsfa.3065.
  36. Rouphael, Y., Corrado, G., Colla, G., De Pascale, S., Dell’Aver-sana, E., D’Amelia, L. I., Fusco, G. M., and Carillo, P. (2021). Biostimulation as a means for optimizing fruit phytochemical content and functional quality of tomato landraces of the San Marzano Area. Foods, 10(5), 926. DOI:10.3390/foods10050926.
  37. Setyorini, D. (2021).Terpenoids: lycopene in tomatoes. In Perveen, S. and Al-Taweel, A. M. (Eds.) Terpenes and TerpenoidsRecent Advances. Biochemistry. IntechOpen. DOI:10.5772/intechopen.97126.
  38. Stoyanova, A., Ivanova, M. and Valchev, N. (2019). Effect of nutrition and water regime on the photosynthesis in tomato grown in plastic greenhouses. Bulgarian Journal of Agricultural Science, 25(3), 19 – 23.
  39. Symanowicz, B. and Toczko, R. (2023). Brown coal waste in agriculture and environmental protection: a review. Sustainability, 15, 13371. DOI:10.3390/su151813371.
  40. Tartaglia, M., Arena, S., Scaloni, A., Marra, M., and Rocco, M. (2020). Biochar administration to San Marzano tomato plants cultivated under low input farming increases growth, fruit yield, and affects gene expression. Frontiers in Plant Science, 11, 1281. DOI:10.3389/fpls.2020.01281.
  41. Tóth, Š. (2023). Paradajky – návrat krajových odrôd [Tomatoes – the return of landraces]. Zahradnictví, 22(5), 56 – 57.
  42. Tóth, Š., Rysak, W., Šoltysová, B., and Karahuta, J. (2015). Effect of soil conditioner based on humic acids humac agro on soil and yield and sugar content of sugar beet in context of selected indicators of agriculture system sustainability. Listy Cukrovarnické a Řepařské, 131(2), 53 – 58.
  43. Tóth, Š., Szanyi, G., Vančo, P., Schubert, J., Porvaz, P., Bujňák, P., Šoltysová, B., and Danielovič, I. (2022). The influence of mineral nutrition and humic acids on the intensity of photosynthesis, the yield and quality of seeds, roots and aboveground phytomass of milk thistle Silybum marianum (L.) Gaertn. in marginal growing conditions. European Journal of Pharmacology, 69(1), 27 – 36. DOI:10.2478/afpuc-2022-0003.
  44. Van Andel, T., Vos, R. A., Michels, E., and Stefanaki, A. (2022). Sixteenth-century tomatoes in Europe: Who saw them, what they looked like, and where they came from. PeerJ, 10(5), e12790. DOI:10.7717/peerj.12790.
  45. Villena, J., Moreno, C., Roselló, S., Beltrán, J., Cebolla-Cornejo, J., and Moreno, M. M. (2023). Breeding tomato flavor: Modeling consumer preferences of tomato landraces. Scientia Horticulturae, 308, 111597. DOI:10.1016/j.scienta.2022.111597.
  46. Wilczewski, E., Szczepanek, M. and Wenda-Piesik, A. (2017). Response of sugar beet to humic substances and foliar fertilization with potassium. Journal of Central European Agriculture, 19(1), 153 – 165. DOI:10.5513/jcea.v18i5.6638.
  47. Xu, J., Huang, Z., Du, H., Tang, M., Fan, P., Yu, J., and Zhou, Y. (2023). SEC1-C3H39 module fine-tunes cold tolerance by mediating its target mRNA degradation in tomato. New Phytologist, 237(3), 870 – 884. DOI:10.1111/nph.18568.
  48. Zechmeister, L., Lerosen, A. L., Schroeder, W. A., Polgar, A., and Pauling, L. (1943). Spectral characteristics and configuration of some stereo isomeric carotenoids including prolycopene and pro-γ-carotene. Journal of the American Chemical Society, 65(10), 1940 – 1951. DOI:10.1021/ja01250a039.
  49. Zhu, J., Liang, Y., Zhu, Y., Hao, W., Lin, X., Wu, X., and Luo, A. (2012). The interactive effects of water and fertilizer on photosynthetic capacity and yield in tomato plants. Australian Journal of Crop Science, 6(2), 200 – 209.
DOI: https://doi.org/10.2478/agri-2025-0008 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 78 - 97
Submitted on: Aug 22, 2025
Accepted on: Nov 20, 2025
Published on: Dec 6, 2025
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Štefan Tóth, Katarína Klemová, Jozef Fejér, Pavol Porvaz, Michal Procházka, Ivan Kron, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.