Have a personal or library account? Click to login
Enhancing Actara and Bayleton Detoxification in Greenhouse Cucumbers Using Plant Growth Stimulants Cover

Enhancing Actara and Bayleton Detoxification in Greenhouse Cucumbers Using Plant Growth Stimulants

Open Access
|Oct 2025

References

  1. Alister, C., Araya, M., Córdova, A., Saavedra, J., & Kogan, M. (2020). Humic substances and their relation to pesticide sorption in eight volcanic soils. Planta Daninha, 38, e020171636. DOI:10.1590/s0100-83582020380100021.
  2. Avetisian, K. (2005). Thin-layer chromatographic method for the determination of microquantities of the insecticide Actara. Biological Journal of Armenia, 12(57), 133 – 134. (in Russian).
  3. Banu, M. M., Reehana, N. & Imran, M. M. (2024). Microbial degradation of pesticides in agricultural environments: A comprehensive review of mechanisms, factors, and biodiversity. Molecular Sciences and Applications, 4, 65 – 101. DOI:10.37394/232023.2024.4.8.
  4. Besaliev, I. N., Panfilov, A. L., Reger, N. S., Karavaytsev, J. A., & Abdrashitov, R. R. (2021). Effect of Biohumus and growth regulators on the content of pigments and catalase, spike productivity and grain quality of spring wheat. In International Conference on World Technological Trends in Agribusiness. IOP Conference Series: Earth and Environmental Science, 624 (012151) 1 – 7. DOI:10.1088/1755-1315/624/1/012151.
  5. Ćwieląg-Piasecka, I., Medyńska-Juraszek, A., Jerzykiewicz, M., Dębicka, M., Bekier, J., Jamroz, E., & Kawałko, D. (2018). Humic acid and biochar as specific sorbents of pesticides. Journal of Soils and Sediments, 18(6), 2692 – 2702. DOI:10.1007/s11368-018-1976-5.
  6. European Parliament and Council. (2005). Regulation (EC) No 396/2005 of the European Parliament and of the Council of 23 February 2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin and amending Council Directive 91/414/EEC. Official Journal of the European Union, L 70, 1–16.
  7. Hasanuzzaman, M., Bhuyan, M. H. M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. DOI:10.3390/antiox9080681.
  8. HS-2.3539-18. (2019). Hygienic standards for pesticide content in environmental objects (List). Moscow: Federal Center for Hygiene and Epidemiology of Rospotrebnadzor. (in Russian)
  9. Johnson, J. & Mirza, A. (2020). Role of macro and micronutrients in the growth and development of plants. International Journal of Current Microbiology and Applied Sciences, 9(11), 576 – 587. DOI:10.20546/ijcmas.2020.911.071.
  10. Katsenios, N., Sparangis, P., Vitsas, S., Leonidakis, D., & Aspasia, E. (2023). Application of biostimulants and herbicides as a promising co-implementation: The incorporation of a new cultivation practice. Agronomy, 13(10), 2634. DOI:10.3390/agronomy13102634.
  11. Kumar, S., Kumar, S. & Mohapatra, T. (2021). Interaction between macro‐ and micro-nutrients in plants. Frontiers in Plant Science, 12, 665583. DOI:10.3389/fpls.2021.665583.
  12. Kumari, M., Swarupa, P., Kesari, K. K., & Kumar, A. (2023). Microbial inoculants as plant biostimulants: A review on risk status. Life, 13(1), 12. DOI:10.3390/life13010012.
  13. Liu, T., Li, T., Zhang, L., Li, H., Liu, S., Yang, S., An, Q., Pan, C., & Zou, N. (2021) Exogenous salicylic acid alleviates the accumulation of pesticides and mitigates pesticide-induced oxidative stress in cucumber plants (Cucumis sativus L.). Ecotoxicology and Environmental Safety, 208, 111654. DOI:10.1016/j.ecoenv.2020.111654.
  14. Ma, L. Y., Zhang, S. H., Zhang, J. J., Zhang, A. P., Li, N., Wang, X. Q., Yu, Q. Q., & Yang, H. (2018). Jasmonic acids facilitate the degradation and detoxification of herbicide isoproturon residues in wheat crops (Triticum aestivum). Chemical Research in Toxicology, 31, 752 – 761. DOI:10.1021/acs.chemrestox.8b00100.
  15. Unified method for the determination of Bayleton and Baytan in agricultural produce, water, and soil using gas-liquid and thin-layer chromatography (1992). In Methods for the Determination of Microquantities of Pesticides in Food Products, Fodder, and the Environment, 1st ed., Moscow: Kolos, pp. 460 – 468. (in Russian).
  16. Van Eerd, L. L., Hoagland, R. E., Zablotowicz, R. M., & Hall, J. C. (2003). Pesticide metabolism in plants and microorganisms. Weed Science, 51(4), 472 – 495. DOI:/10.1614/0043-1745(2003)051.
  17. Yılmaz, C. & Durmuşoğlu, E. (2012). Changes on biological effect and degration duration of some insecticides mixed with humic matter used against Trialeurodes vaporariorum (Westw.) (Hemiptera: Aleyrodidae)] on tomato. Turkish Journal of Entomology, 36(4), 559 – 571.
  18. Zhang, B., Lv F. & Yang, J. (2024). Pesticides toxicity, removal and detoxification in plants: a review. Agronomy, 14, 1260. DOI:10.3390/agronomy14061260.
DOI: https://doi.org/10.2478/agri-2025-0004 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 36 - 40
Submitted on: Mar 17, 2025
Accepted on: Aug 1, 2025
Published on: Oct 17, 2025
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2025 Levon Harutyuni Atchemian, Varsenik Samveli Mirzoyan, Nelli Karleni Petrosian, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.