Berger-Neto, A., Jaccoud-Filho, D. S., Wutzki, C. R., Tullio, H. E., Pierre, M. L. C., Manfron, F., and Justino, A. (2017). Effect of spray droplet size, spray volume and fungicide on the control of white mold in soybeans. Crop Protection, 92, 190 – 197. DOI:10.1016/j.cropro.2016.10.016.
Bryant, J. E. and Yendol, W. G. (1988). Evaluation of the influence of droplet size and density of Bacillus thuringiensis against gypsy moth larvae (Lepidoptera: Lymantriidae). Journal of Economic Entomology, 81, 130 – 134. DOI:10.1093/jee/81.1.130.
Fan, K., Wang, J., Fu, L., Li, X., Zhang, Y., Zhang, X., Zhai, H., and Qu, J. (2016). Sensitivity of Botryosphaeria dothidea from apple to tebuconazole in China. Crop Protection, 87(1 – 5), 1 – 5. DOI:10.1016/j.cropro.2016.04.018.
Fritz, B. K., Kirk, I. W., Hoffmann, W. C., Martin, D. E., Hofman, V. L., Hollingsworth, C., McMullen, M., and Halley, S. (2006). Aerial application methods for increasing spray deposition on wheat heads. Applied Engineering in Agriculture, 23, 357 – 364. DOI:10.13031/2013.20453.
He, X. K., Bonds, J., Herbst, A., and Langenakens, J. (2017). Recent development of unmanned aerial vehicle for plant protection in East Asia. International Journal of Agricultural Biological Engineering, 10, 18 – 30. DOI:10.3965/j. ijabe.20171003.3248.
Hoffmann, W. C., Lingren, P. S., Coppedge, J. R., and Kirk, I. W. (1998). Application parameter effects on efficacy of a semi-ochemical-based insecticide. Applied Engineering in Agriculture, 14, 459 – 463. DOI:10.13031/2013.19410.
Chen, P., Lan, Y., Huang, X., and Qi, H. (2020). Droplet deposition and control of planthoppers of different nozzles in two-stage rice with a quadrotor unmanned aerial vehicle. Agronomy, 10, 303. DOI:10.3390/agronomy10020303.
Chen, Y., Qi, H. L., Li, G. Z., and Lan, Y. B. (2019). Weed control effect of unmanned aerial vehicle (UAV) application in wheat field. International Journal of Precision Agricultural Aviation, 2(2), 25 – 31. DOI:10.33440/j.ijpaa.20190202.45.
Köycü, N. D., Özyurt, H. B., and Çelen, İ. K. (2024). Comparison of aerial and ground spraying applications in controlling fusarium crown rot in wheat. International Journal of Agricultural and Biological Engineering, 17(5), 73 – 80. DOI:10.25165/j. ijabe.20241705.8553.
Li, X., Andaloro, J., Lang, E., and Pan, Y. (2019). Best management practices for unmanned aerial vehicles (UAVs) application of insecticide products on rice. ASABE Annual International Meeting, Boston, Massachusetts. Paper No. 1901493. DOI:10.13031/aim.201901493.
Li, X., Giles, D. K., Niederholzer, F. J., Andaloro, J. T., Lang, E. B., and Watson, L. J. (2021). Evaluation of an unmanned aerial vehicle as a new method of pesticide application for almond crop protection. Pest Management Science, 77, 527 – 537. DOI:10.1002/ps.6052.
Li, Y., Li, Y., Pan, X., Li, Q., Chen, R., Li, X., Pan, C., and Song, J. (2017). Comparison of spray deposition, loss and residue of azoxystrobin and tebuconazole in sunlit greenhouse tomato and field cucumber of a new air-assisted sprayer and two conventional sprayers. Pest Management Science, 74, 448 – 455. DOI:10.1002/ps.4728.
Menechini, W., Maggi, M. F., Jadoski, S. O., Leite, C. D., and Camicia, R. D. M. (2017). Aerial and ground application of fungicide in corn second crop on diseases control. Engenharia Agrícola, 37, 116 – 127. DOI:10.1590/1809-4430-eng.agric. v37n1p116-127/2017.
Önler, E., Özyurt, H. B., Şener, M., Sezen, A. R. A. T., Eker, B., and Çelen, İ. H. (2023). Spray characterization of an unmanned aerial vehicle for agricultural spraying. The Philippine Agricultural Scientist, 106(1), 39 – 46. DOI:10.62550/AR007022.
Prokop, M. and Veverka, K. (2006). Influence of droplet spectra on the efficiency of contact fungicides and mixtures of contact and systemic fungicides. Plant Protection Science, 42, 26 – 33. DOI:10.17221/4093-PSE.
Qin, W. C., Qiu, B. J., Xue, X. Y., Chen, C., Xu, Z. F., and Zhou, Q. Q. (2016). Droplet deposition and control effect of insecticides sprayed with an unmanned aerial vehicle against plant hoppers. Crop Protection, 85, 79 – 88. DOI:10.1016/j.cropro.2016.03.018.
Ragiman, S., Talluri, K. B., NRG, V., and Vidya, S. B. (2024). Unmanned aerial vehicle (UAV)-assisted pesticide application for pest and disease prevention and control in rice. International Journal of Agricultural and Biological Engineering, 17(5), 88 – 95. DOI:10.25165/j.ijabe.20241705.8640.
Rincón, V. J., Sánchez-Hermosilla, J., Páez, F., Pérez-Alonso, J., and Callejón, Á. J. (2017). Assessment of the influence of working pressure and application rate on pesticide spray application with a hand-held spray gun on greenhouse pepper crops. Crop Protection, 96, 7 – 13. DOI:10.1016/j.cropro.2017.01.006.
Shengde, C., Yubin, L., Jiyu, L., Zhiyan, Z., Aimin, L., and Yuedong, M. (2017). Effect of wind field below unmanned helicopter on droplet deposition distribution of aerial spraying. International Journal of Agricultural and Biological Engineering, 10(3), 67 – 77. DOI:10.3965/j.ijabe.20171003.3078.
Subramanian, K. S., Pazhanivelan, S., Srinivasan, G., Santhi, R., and Sathiah, N. (2021). Drones in insect pest management. Frontiers in Agronomy, 3, 1 – 12. DOI:10.3389/fagro.2021.640885.
Wang, G., Lan, Y., Qi, H., Chen, P., Hewittd, A., and Hana, Y. (2019). Field evaluation of an unmanned aerial vehicle (UAV) sprayer: effect of spray volume on deposition and the control of pests and disease in wheat. Pest Management Science, 75, 1546 – 1555. DOI:10.1002/ps.5321.
Wang, G. B., Li, X., Andaloro, J., Chen, P. C., Cancan, S., Chang-feng, C., Chen, S., and Lan, Y. (2020). Deposition and biological efficacy of UAV-based low-volume application in rice fields. International Journal of Precision Agricultural Aviation, 3(2), 65 – 72. DOI:10.33440/j.ijpaa.20200302.86.
Wang, S., Song, J., He, X., Song, L., Wang, X., Wang, C., Wang, Z., and Ling, Y. (2017). Performances evaluation of four typical unmanned aerial vehicles used for pesticide application in China. International Journal of Agricultural Biological Engineering, 10, 22 – 31. DOI:10.25165/j.ijabe.20171004.3219.