References
- Afzal, M., Yu, M., Tang, C., Zhang, L., Muhammad, N., Zhao, H., & Xu, J. (2019). The negative impact of cadmium on nitrogen transformation processes in a paddy soil is greater under non-flooding than flooding conditions. Environment international, 129, 451 – 460. DOI:10.1016/j.envint. 2019.05.058.
- Ali, H., Khan, E. & Sajad, M. A. (2013). Phytoremediation of heavy metals – concepts and applications. Chemosphere, 91(7), 869 – 881. DOI:10.1016/j.chemosphere.2013.01.075.
- Aoshima, K. (2016). Itai-itai disease: Renal tubular osteomalacia induced by environmental exposure to cadmium-historical review and perspectives. Soil Science and Plant Nutrition, 62(4), 319 – 326. DOI:10.1080/00380768.2016.115 9116.
- Arao, T. & Ae, N. (2003). Genotypic variations in cadmium levels of rice grain. Soil Science and Plant Nutrition, 49(4), 473 – 479. DOI:10.1080/00380768.2003.10410035.
- Aslam, M. M., Okal, E. J. & Waseem, M. (2023). Cadmium toxicity impacts plant growth and plant remediation strategies. Plant Growth Regulation, 99(3), 397 – 412. DOI:10.1007/s10725-022-00917-7.
- Chen, Q., Lu, X., Guo, X., Pan, Y., Yu, B., Tang, Z., & Guo, Q. (2018). Differential responses to Cd stress induced by exogenous application of Cu, Zn or Ca in the medicinal plant Catharanthus roseus. Ecotoxicology and Environmental Safety, 157, 266 – 275. DOI:10.1016/j.ecoenv.2018.03.055.
- Cheng WangDa, C. W., Yao HaiGen, Y. H., Zhang GuoPing,
- Z. G., Tang MeiLing, T. M., & Dominy, P. (2005). Effect of cadmium on growth and nutrition metabolism in rice. Scientica Agricultura Sinica, 38(3), 528 – 537.
- Cheng, W. D., Yao, H. G., Zhang, H. M., & Tao, X. G. (2009). Influences of cadmium on grain mineral nutrient contents of two rice genotypes differing in grain cadmium accumulation. Rice Science, 16(2), 151 – 156. DOI:10.1016/S1672-6308(08)60072-4.
- Das, P., Samantaray, S. & Rout, G. R. (1997). Studies on cadmium toxicity in plants: A review. Environmental Pollution, 98, 29 – 36. DOI:10.1016/S0269-7491(97)00110-3.
- European Commission, (2006). Commission Regulation (EC) 2006 No 1881/2006 of 19th December 2006 setting maximum levels for certain contaminants in foodstuffs, issued by the European Commission.
- Gee, G. W. & Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43(5), 1004 – 1007.
- DOI:10.2136/sssaj1979.03615995004300050038x. Gianazza, E., Wait, R., Sozzi, A., Regondi, S., Saco, D., & Labra, M. (2007). Growth and protein profile changes in Lepidium sativum L. plantlets exposed to cadmium. Environmental Experimental Botany, 59, 179 – 87. DOI:10.1016/j.envexpbot. 2005.12.005.
- Gomez, K. A. & Gomez, A. K. (1984). Statistical Procedures for Agricultural Research. 2nd edition. John Wiley and Sons. New York, pp. 207 – 215.
- Gonçalves, J. F., Tabaldi, L. A., Cargnelutti, D., Pereira, L. B., Maldaner, J., Becker, A. G., & Nicoloso, F. T. (2009). Cadmium-induced oxidative stress in two potato cultivars. Biometals, 22, 779 – 792. DOI:10.1007/s10534-009-9225-4.
- Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., & Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. DOI:10.1016/j. ecoenv.2020.111887.
- Herath, H. M. D. A. K., Bandara, D. C., Weerasinghe, P. A., Iqbal, M. C. M., & Wijayawardhana, H. C. D. (2015). Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Tropical Agricultural Research, 25(4), 532 – 542. DOI:10.4038/tar.v25i4.8059.
- Hongjiang, Z., Xizhou, Z., Tingxuan, L., & Fu, H. (2014). Variation of cadmium uptake, translocation among rice lines and detecting for potential cadmium-safe cultivars. Environmental Earth Sciences, 71(1), 277 – 286. DOI:10.1007/s12665-013-2431-y.
- Horiguchi, H. (2012). Current status of cadmium exposure among Japanese, especially regarding the safety standard for cadmium concentration in rice and adverse effects on proximal renal tubular function observed in farmers exposed to cadmium through consumption of self-grown rice. Nihon eiseigaku zasshi. Japanese Journal of Hygiene, 67(4), 447 – 454. DOI:10.1265/jjh.67.447.
- Household Income and Expenditure Survey (HIES) 2022. Bangladesh Buerau of Statistics. Statistics and Informatic Division. Ministry of Planning. Government of the Peoples Republic of Bangladesh.
- Hu, P., Ouyang, Y., Wu, L., Shen, L., Luo, Y., & Christie, P. (2015). Effects of water management on arsenic and cadmium speciation and accumulation in an upland rice cultivar. Journal of Environmental Sciences, 27, 225 – 231. DOI: 10.1016/j.jes.2014.05.048.
- Hu, Y., Cheng, H. & Tao, S. (2016). The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environment International, 92, 515 – 532. DOI: 10.1016/j.envint.2016.04.042.
- IARC (1993). Beryllium, cadmium, mercury and exposures in the glass manufacturing industry. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans, International Agency for Research on Cancer, Lyon, 58, 41 – 117.
- IRIS, (2013). Integrated Risk Information Systems. US Environmental Protection Agency.
- Jackson, M. L. (1973). Soil Chemical Analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India, 498, 151 – 154.
- Jing, S. H. I., Lianqing, L. I. & Genxing, P. A. N. (2009). Variation of grain Cd and Zn concentrations of 110 hybrid rice cultivars grown in a low-Cd paddy soil. Journal of Environmental Sciences, 21(2), 168 – 172. DOI:10.1016/S1001-0742(08)62246-9.
- Kanu, A. S., Ashraf, U., Mo, Z., Fuseini, I., Mansaray, L. R., Duan, M., ... & Tang, X. (2017). Cadmium uptake and distribution in fragrant rice genotypes and related consequences on yield and grain quality traits. Journal of Chemistry, 2017(1), 1405878. DOI:10.1155/2017/1405878.
- Kibria, K. Q., Islam, M. A., Hoque, S., Siddique, M. A. B., Hossain, M. Z., & Islam, M. A. (2022). Variations in cadmium accumulation among amon rice cultivars in Bangladesh and associated human health risks. Environmental Science and Pollution Research, 29(26), 39888 – 39902. DOI:10.1007/s11356-022-18762-6.
- Kinay, A. (2018). Effects of cadmium on nicotine, reducing sugars and phenolic contents of Basma tobacco variety. Fresenius Environmental Bulletin, 27(12A), 9195 – 9202.
- Kobayashi, E., Suwazono, Y., Dochi, M., Honda, R., & Kido, T. (2009). Influence of consumption of cadmium-polluted rice or Jinzu River water on occurrence of renal tubular dysfunction and/or Itai-itai disease. Biological Trace Element Research, 127, 257 – 268. DOI:10.1007/s12011-008-8239-z.
- Kudsen, D. & Peterson, G. A. (1982). Lithium, sodium, and potassium. Methods of Soil Analysis, 2, 225 – 245. DOI: 10.2134/agronmonogr9.2.2ed.c13.
- Li, B., Wang, X., Qi, X., Huang, L., & Ye, Z. (2012). Identification of rice cultivars with low brown rice mixed cadmium and lead contents and their interactions with the micronutrients iron, zinc, nickel and manganese. Journal of Environmental Sciences, 24(10), 1790 – 1798. DOI:10.1016/S1001-0742(11)60972-8.
- Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., & Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 325, 121433. DOI:10.1016/j.envpol.2023.121433.
- Liu, J. G., Qu, P., Zhang, W., Dong, Y., Li, L., & Wang, M. X. (2014). Variations among rice cultivars in subcellular distribution of Cd: the relationship between translocation and grain accumulation. Environmental and Experimental Botany, 107, 25 – 31. DOI:10.1016/j.envexpbot.2014.05.004.
- Liu, J., Cao, C., Wong, M., Zhang, Z., & Chai, Y. (2010a). Variations between rice cultivars in iron and manganese plaque on roots and the relation with plant cadmium uptake. Journal of Environmental Sciences, 22(7), 1067 – 1072. DOI: 10.1016/S1001-0742(09)60218-7.
- Liu, J., Qian, M., Cai, G., Yang, J., & Zhu, Q. (2007). Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. Journal of Hazardous Materials, 143(1 – 2), 443 – 447. DOI:10.1016/j. jhazmat.2006.09.057.
- Liu, W., Zhou, Q., An, J., Sun, Y. & Liu, R. (2010b). Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials, 173, 737 – 743. DOI:10.1016/j. jhazmat.2009.08.147.
- Meharg, A. A., Meharg, C., Carey, M., Williams, P., Shi, Z., Campbell, K., & Islam, M. R. (2022). Global geographical variation in elemental and arsenic species concentration in paddy rice grain identifies a close association of essential elements copper, selenium and molybdenum with cadmium. Exposure and Health, 15(3), 505 – 518. DOI:10.1007/s12403-022-00504-1.
- Mitra, S., Pramanik, K., Ghosh, P. K., Soren, T., Sarkar, A., Dey, R. S., & Maiti, T. K. (2018). Characterization of Cd-resistant Klebsiella michiganensis MCC3089 and its potential for rice seedling growth promotion under Cd stress. Microbiological Research, 210, 12 – 25. DOI:10.1016/j.micres. 2018.03.003.
- Mostofa, M. G., Rahman, A., Ansary, M. M. U., Watanabe, A., Fujita, M., & Tran, L. S. P. (2015). Hydrogen sulfide modulates cadmium-induced physiological and biochemical responses to alleviate cadmium toxicity in rice. Scientific Reports, 5(1), 14078. DOI:10.1038/srep14078.
- Mu, T., Wu, T., Zhou, T., Li, Z., Ouyang, Y., Jiang, J., & Wu, L. (2019). Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Science of the Total Environment, 677, 373 – 381. DOI:10.1016/j.scitotenv.2019.04.337.
- Mukta, T. A., Hoque, M. A., Shimo, F. J., & Islam, S. (2024). Cadmium contamination in rice and associated human health risk. Agriculture, 70(1), 38 – 52. DOI:10.2478/agri-2024-0004.
- Murphy, J. A. M. E. S. & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31 – 36. DOI: 10.1016/S0003-2670(00)88444-5.
- OEHHA, O. (2014). Hot Spots Unit Risk and Cancer Potency Values. Technical Report.
- Rehman, M. Z. U., Rizwan, M., Ghafoor, A., Naeem, A., Ali, S., Sabir, M., & Qayyum, M. F. (2015). Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation. Environmental Science and Pollution Research, 22, 16897 – 16906. DOI:10.1007/s11356-015-4883-y.
- Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., & Ok, Y. S. (2016). Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environmental Science and Pollution Research, 23, 17859 – 17879. DOI:10.1007/s11356-016-6436-4.
- Rochayati, S., Du Laing, G., Rinklebe, J., Meissner, R., & Verloo, M. (2011). Use of reactive phosphate rocks as fertilizer on acid upland soils in Indonesia: accumulation of cadmium and zinc in soils and shoots of maize plants. Journal of Plant Nutrition and Soil Science, 174(2), 186 – 194.
- Safarzadeh, S., Ronaghi, A. & Karimian, N. (2013). Effect of cadmium toxicity on micronutrient concentration, uptake and partitioning in seven rice cultivars. Archives of Agronomy and Soil Science, 59(2), 231 – 245. DOI: 10.1080/03650340.2011.622752.
- Sarwar, N., Saifullah, Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90(6), 925 – 937. DOI: 10.1002/jsfa.3916.
- Shahriar, S., Rahman, M. M. & Naidu, R. (2020). Geographical variation of cadmium in commercial rice brands in Bangladesh: Human health risk assessment. Science of the Total Environment, 716, 137049. DOI:10.1016/j.scitotenv. 2020.137049.
- Shi, Z., Carey, M., Meharg, C., Williams, P. N., Signes-Pastor, A. J., Triwardhani, E. A., & Meharg, A. A. (2020). Rice grain cadmium concentrations in the global supply-chain. Exposure and Health, 12, 869 – 876. DOI:10.1007/s12403-020-00349-6.
- Siddique, A. B., Rahman, M. M., Islam, M. R., & Naidu, R. (2022). Influences of soil pH, iron application and rice variety on cadmium distribution in rice plant tissues. Science of the Total Environment, 8(10), 152296. DOI:10.1016/j. scitotenv.2021.152296.
- Song, W. E., Chen, S. B., Liu, J. F., Li, C.H.E.N., Song, N. N., Ning, L. I. & Bin, L. I. U. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. Journal of Integrative Agriculture, 14(9), 1845 – 1854. DOI:10.1016/S2095-3119(14)60926-6.
- Uraguchi, S. & Fujiwara, T. (2012). Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 5, 1 – 8.
- Wang, M. Y., Chen, A. K., Wong, M. H., Qiu, R. L., Cheng, H., & Ye, Z. H. (2011). Cadmium accumulation in and tolerance of rice (Oryza sativa L.) varieties with different rates of radial oxygen loss. Environmental Pollution, 159(6), 1730 – 1736. DOI:10.1016/j.envpol.2011.02.025.
- Wang, Y., Jiang, X., Li, K., Wu, M., Zhang, R., Zhang, L., & Chen, G. (2014). Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals, 27, 389 – 401. DOI: 10.1007/s10534-014-9720-0.
- Zhang, F., Liu, M., Li, Y., Che, Y., & Xiao, Y. (2019). Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Science of the Total Environment, 655, 1150 – 1158. DOI:10.1016/j. scitotenv.2018.11.317.
- Zhao, F. J. & Wang, P. (2020). Arsenic and cadmium accumulation in rice and mitigation strategies. Plant and Soil, 446(1), 1 – 21. DOI:10.1007/s11104-019-04374-6.