References
- Aboderin, O. S., Bankole, F. A., Oyekunle, M., and Olaoye, G. (2023). Yield stability and inter-traits relationships of maize hybrids under low- and optimum-nitrogen conditions. Agriculture (Poľnohospodárstvo), 69(4), 171 – 185. DOI:10.2478/agri-2023-0015.
- Aboderin, O. S., Oyekunle, M., Bankole, F. A., and Olaoye, G. (2024a). Combining ability for grain yield and low-N tolerance of intermediate/late maturing maize inbred lines. Journal of Crop Improvement, 38(6), 731 – 751. DOI: 10.1080/15427528.2024.2405167.
- Aboderin, O. S., Oyekunle, M., Bankole, F. A., and Olaoye, G. (2024b). Evaluation of maize F1 hybrids’ tolerance to low soil nitrogen using various selection indices. Thailand Journal of Agricultural Science, 57(2), 94 – 108.
- Akinwale, R. O. (2021). Heterosis and heterotic grouping among tropical maize germplasm. In Goyal, A.K (Ed.) Cereal Grains, 2, 59. DOI:10.5772/intechopen.98742.
- Badu-Apraku, B., Akinwale, R. O., Menkir, A., Obeng-Antwi, K., Osuman, A. S., Coulibaly, N., Onyibe, J. E., Yallou, G. G., and Didjera, A. (2011). Use of GGE biplot for targeting early maturing maize cultivars to mega-environments in West Africa. African Crop Science Journal, 19(2), 79 – 96. DOI:10.4314/acsj.v19i2.69858.
- Badu-Apraku, B., Oyekunle, M., Fakorede, M. A. B., Vroh, I., Akinwale, R. O., and Aderounmu, M. (2013). Combining ability, heterotic patterns, and genetic diversity of extra-early yellow inbreds under contrasting environments. Euphytica, 192(3), 413 – 433. DOI:10.1007/s10681-013-0876-4.
- Badu-Apraku, B., Fakorede, M., Annor, B., Adu, G., Obeng-Bio, E., Abu, P., Bhadmus, O., and Nelimor, C. (2023). Genetic enhancement of early and extra-early maturing maize for tolerance to low-soil nitrogen in Sub-Saharan Africa. Crop Breeding, Genetics and Genomics 5(1), 1 – 44. DOI:10.20900/cbgg20230001.
- Bankole, F. A., Olajide, O. O., and Olaoye, G. (2023). Performance and yield stability of quality protein maize (Zea mays L.) hybrids under rainfed condition. Agriculture (Poľnohospodárstvo), 69(2), 66 – 76. DOI:10.2478/agri-2023-0006.
- Bänziger, M., Edmeades, G. O., Beck, D., and Bellon, M. (2000). Breeding for Drought and Nitrogen Stress Tolerance in Maize: From Theory to Practice. Mexico, D.F.: CIMMYT. Avaiable at: https://repository.cimmyt.org/server/api/core/bitstreams/49cdcaf5-16cb-4f0a-b3fe-dd291271e87d/content.
- Bhadmus, O. A., Badu-Apraku, B., Adeyemo, O. A., and Ogunkanmi, A. L. (2021). Genetic analysis of early white quality protein maize inbreds and derived hybrids under low-nitrogen and combined drought and heat stress environments. Plants, 10(12), 2596. DOI:10.3390/plants10122596.
- Ertiro, B. T., Beyene, Y., Das, B., Mugo, S., Olsen, M., Oikeh, S., Juma, C., Labuschagne, M., Prasanna, B. M., and Lübberstedt, T. (2017). Combining ability and testcross performance of drought-tolerant maize inbred lines under stress and non-stress environments in Kenya. Plant Breeding, 136(2), 197 – 205. DOI:10.1111/pbr.12464.
- Falconer, D. S. and Mackay, T. F. C. (1996). Introduction to Quantitative Genetics. Longman Group Ltd.
- Giordano, M., Petropoulos, S. A. and Rouphael, Y. (2021). The fate of nitrogen from soil to plants: Influence of agricultural practices in modern agriculture. Agriculture, 11(10), 944. DOI:10.3390/agriculture11100944
- Griffing, B. (1956) Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Biological Science, 9(4), 463 − 493. DOI:10.1071/BI9560463.
- Kamal, N. M., Alnor Gorafi, Y. S., Abdelrahman, M., Abdellatef, E., and Tsujimoto, H. (2019). Stay-green trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International Journal of Molecular Sciences, 20(23), 5837. DOI:10.3390/ijms20235837.
- Kumar, R., Krishna, H., Barman, D., Ghimire, O., Shekharappa, G., Singh, P., Chinnusamy, V., Padaria, J., and Arora, A. (2021). Stay-green trait serves as yield stability attribute under combined heat and drought stress in wheat (Triticum aestivum L.). Plant Growth Regulation, 96(3). DOI:10.1007/s10725-021-00758-w.
- Landon, J. R. (1991). Booker tropical soil manual: A handbook for soil survey and agricultural land evaluation in the tropic and sub tropics. London: Addison Wesley.
- Liu, Z., Jiang, J., Ren, A., Xu, X., Zhang, H., Zhao, T., Jiang, X., Sun, Y., Li, J., and Yang, H. (2021). Heterosis and combining ability analysis of fruit yield, early maturity, and quality in tomato. Agronomy, 11(4), 807. DOI:10.3390/agronomy11040807.
- Mafouasson, H. N. A., Kenga R., Gracen, V., Yeboah, M. A., Mahamane, N. L., Tandzi, N. L., and Ntsomboh-Ntsefong, G. (2017). Combining ability and gene action of tropical maize (Zea mays L.) inbred lines under low and high nitrogen conditions. The Journal of Agricultural Science, 9(4), 222. DOI:10.5539/jas.v9n4p222.
- Mafouasson, H. N. A., Gracen, V., Yeboah, M. A., Ntsomboh-Ntsefong, G., Tandzi, L. N., and Mutengwa, C. S. (2018). Genotype-by-Environment interaction and yield stability of maize single cross hybrids developed from tropical inbred lines. Agronomy, 8(5), 62. DOI:10.3390/agronomy8050062.
- Musacchio, A., Re, V., Mas-Pla, J., and Sacchi, E. (2020). EU nitrates directive, from theory to practice: Environmental effectiveness and influence of regional governance on its performance. Ambio, 49, 504 – 516. DOI:10.1007/s13280-019-01197-8.
- Obeng-Bio, E., Badu-Apraku, B., Ifie, B. E., Danquah, A., Blay, E. T., Dadzie, M. A., Noudifoulè, G. T., and Talabi, A. O. (2020). Genetic diversity among early provitamin A quality protein maize inbred lines and the performance of derived hybrids under contrasting nitrogen environments. BMC Genetics, 21(1), 78. DOI:10.1186/s12863-020-00887-7.
- Olakojo, S. A. and Olaoye, G. (2005). Combining ability for grain yield, agronomic traits and Striga lutea tolerance of maize hybrids under artificial striga infestation. African Journal of Biotechnology, 4(9), 984 – 988. DOI:10.4314/AJB.V4I9.71173.
- Oyekunle, M. and Badu-Apraku, B. (2013). Hybrid performance and inbred-hybrid relationship of early maturing tropical maize under drought and well-watered conditions. Cereal Research Communications, 43(2), 314 – 325. DOI:10.1556/CRC.2014.002.
- Pacheco, A., Vargas, M., Alvarado, G., Rodríguez, F., Crossa, J., and Burgueño, J. (2016). GEA-R (genotype×environment analysis with R for Windows). Version 2.0. CIMMYT. Available at: http://hdl.handle.net/11529/10203.
- Ribeiro, P. F., Badu Apraku, B., Gracen, V., Danquah, E. Y., Afriyie-Debrah, C., Obeng-Dankwa, K., and Toyinbo, J. O. (2020). Combining ability and testcross performance of low N tolerant intermediate maize inbred lines under low soil nitrogen and optimal environments. The Journal of Agricultural Science, 158(5), 1 – 20. DOI:10.1017/S0021859620000702.
- Sangaré, S., Menkir, A., Ofori, K., and Gracen, V. (2018). Combining ability for grain yield, agronomic traits and Striga hermonthica resistance of yellow endosperm maize. Journal of Plant Genetics and Breeding, 2(2), 1 – 8. https://hdl.handle.net/10568/105993.
- SAS Institute. (2008). Statistical Analysis Software (SAS) User’s Guide. Version 9.0. Cary, NC: SAS Institute.
- Technow, F. (2019). Use of F2 bulks in training sets for genomic prediction of combining ability and hybrid performance. G3: Genes, Genomes, Genetics, 9(5), 1557 – 1569. DOI:10.1534/g3.118.200994.
- Tully, K., Sullivan, C., Weil, R., and Sanchez, P. (2015). The state of soil degradation in Sub-Saharan Africa: Baselines, trajectories, and solutions. Sustainability, 7(6), 6523 − 6552. DOI:10.3390/su7066523.
- Yan, W. and Tinker, N. A. (2006). Biplot analysis of multi-environment trial data: Principles and applications. Canadian Journal of Plant Science, 86(3), 623 – 645. DOI:10.4141/P05-169.
- Yu, K. C., Wang, H., Liu, X. G., Xu, C., Li, Z. W., Xu, X. J., Liu, J. C., Wang, Z. H., and Xu, Y. B. (2020). Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Frontiers in Plant Science, 11, 660. DOI:10.3389/fpls.2020.00660.