Have a personal or library account? Click to login
Cadmium Contamination in Rice and Associated Human Health Risk Cover

Cadmium Contamination in Rice and Associated Human Health Risk

Open Access
|Dec 2024

References

  1. Ali, H., Khan, E. and Sajad, M. A. (2013). Phytoremediation of heavy metals-Concepts and applications. Chemosphere, 91(7), 869 – 881. DOI:10.1016/j.chemosphere.2013.01.075.
  2. Arao, T., Kawasaki, A., Baba, K., Mori, S., and Matsumoto, S. (2009). Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in Japanese rice. Environmental Science & Technology, 43(24), 9361 – 9367. DOI:10.1021/es9022738.
  3. Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I., Abbas, R. N., and Tang, X. (2015). Lead toxicity in rice: Effects, mechanisms, and mitigation strategies-a mini-review. Environmental Science and Pollution Research, 22, 18318 – 18332. DOI:10.1007/s11356-015-5463-x.
  4. BBS, (2022). Statistical Year Book Bangladesh 2021. Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of People’s Republic. Dhaka, Bangladesh.
  5. Begum, R., Akter, R., Dang-Xuan, S., Islam, S., Siddiky, N. A., Uddin, A. S. M., and Lindahl, J. F. (2023). Heavy metal contamination in retailed food in Bangladesh: a dietary public health risk assessment. Frontiers in Sustainable Food Systems, 7, 01 – 12. DOI:10.3389/fsufs.2023.1085809.
  6. Bolan, N. S., Makino, T., Kunhikrishnan, A., Kim, P. J., Ishikawa, S., Murakami, M., Naidu, R., and Kirkham, M. B. (2013). Cadmium contamination and its risk management in rice ecosystems. Advances in Agronomy, 119, 183 – 273. DOI:10.1016/B978-0-12-407247-3.00004-4.
  7. Cai, K., Li, C., Song, Z., Gao, X., and Wu, M. (2019b). Pollution and health risk assessment of carcinogenic elements As, Cd, and Cr in multiple media ‒ A case of a sustainable farming area in China. Sustainability, 11(19), 01 – 22. DOI: 10.3390/su11195208.
  8. Cai, K., Yu, Y., Zhang, M., and Kim, K. (2019a). Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. International Journal of Environmental Research and Public Health, 16(13), 01 – 18. DOI:10.3390/ijerph16132269.
  9. Cai, L. M., Wang, Q. S., Luo, J., Chen, L. G., Zhu, R. L., Wang, S., and Tang, C. H. (2019c). Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China. Science of the Total Environment, 650, 725 – 733. DOI:10.1016/j.scitotenv.2018.09.081.
  10. Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M. H., and Masclaux-Daubresse, C. (2004). Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45(11), 1681 – 1693. DOI:10.1093/pcp/pch192.
  11. Chen, H. P., Wang, P., Chang, J. D., Kopittke, P. M., and Zhao, F. J. (2021). Producing Cd-safe rice grains in moderately and seriously Cd-contaminated paddy soils. Chemosphere, 267, 01 – 10. DOI:10.1016/j.chemosphere.2020.128893.
  12. Dong, Q., Fang, J., Huang, F., and Cai, K. (2019). Silicon amendment reduces soil Cd availability and Cd uptake of two Pennisetum species. International Journal of Environmental Research and Public Health, 16(9), 1624. DOI: 10.3390/ijerph16091624.
  13. Fan, Y., Zhu, T., Li, M., He, J., and Huang, R. (2017). Heavy metal contamination in soil and brown rice and human health risk assessment near three mining areas in central China. Journal of Healthcare Engineering, 2017, 1 – 9. DOI:10.1155/2017/4124302.
  14. Feng, J., Shen, R. F. and Shao, J. F. (2021). Transport of cadmium from soil to grain in cereal crops. Pedosphere, 31(1), 3 – 10. DOI:10.1016/S1002-0160(20)60015-7.
  15. Ferraz, E. R. A., Umbuzeiro, G. A., De-Almeida, G., Caloto-Oliveira, A., Chequer, F. M. D., Zanoni, M. V. B., Dorta, D. J., and Oliveira, D. P. (2011). Differential toxicity of Disperse Red 1 and Disperse Red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environmental Toxicology, 26(5), 489 – 497. DOI:10.1002/tox.20576.
  16. Gee, G. W. and Bauder, J. W. (1979). Particle size analysis by hydrometer: a simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Science Society of America Journal, 43(5), 1004 – 1007. DOI:10.2136/sssaj1979.03615995004300050038x.
  17. Haider, F. U., Liqun, C., Coulter, J. A., Cheema, S. A., Wu, J., Zhang, R., and Farooq, M. (2021). Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicology and Environmental Safety, 211, 111887. DOI:10.1016/j. ecoenv.2020.111887.
  18. Herath, H., Bandara, D. C., Weerasinghe, P. A., Iqbal, M. C. M., and Wijayawardhana, H. C. D. (2014). Effect of cadmium on growth parameters and plant accumulation in different rice (Oryza sativa L.) varieties in Sri Lanka. Tropical Agricultural Research, 25(4), 432 – 442. DOI:10.4038/tar. v25i4.8059.
  19. HIES, (2023). Household income and expenditure survey 2022. Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Government of People’s Republic. Dhaka, Bangladesh. Avaiable at: https://bbs.portal.gov.bd/sites/default/files/files/bbs.portal.gov.bd/page/57def76a_aa3c_46e3_9f80_53732eb94a83/2023-04-13-09-35-ee41d-2a35dcc47a94a595c88328458f4.pdf.
  20. IRIS, (2013). Integrated risk information systems. US Environmental Protection Agency. Avaiable at: https://www.epa.gov/iris.
  21. Ishikawa, S., Ae, N., Sugiyama, M., Murakami, M., and Arao, T. (2005). Genotypic variation in shoot cadmium concentration in rice and soybean in soils with different levels of cadmium contamination. Soil Science & Plant Nutrition, 51(1), 101 – 108. DOI:10.1111/j.1747-0765.2005.tb00012.x.
  22. Islam, M. A., Akber, M. A., Rahman, M. B., Rahman, M. A., Haque, M. A., and Islam, M. A. (2019). Trace elements in rice grain and agricultural soils: assessment of health risk of inhabitants near a former secondary lead smelter in Khulna, Bangladesh. Environmental Geochemistry and Health, 41(6), 2521 – 2532. DOI:10.1007/s10653-019-00299-2.
  23. Islam, S., Rahman, M. M., Islam, M. R., and Naidu, R. (2017). Geographical variation and age-related dietary exposure to arsenic in rice from Bangladesh. Science of the Total Environment, 601, 122 – 131. DOI:10.1016/j.scitotenv. 2017.05.184.
  24. Jackson, M. L. (1967). Chemical analysis. Prentice Hall of India. Pvt. Ltd., New Delhi, 498.
  25. Jackson, M.L. (1973). Soil chemical analysis. Prentice Hall of India Pvt. Ltd., New Delhi, India, 498, pp. 151 – 154.
  26. Jahiruddin, M., Xie, Y., Ozaki, A., Islam, M. R., Nguyen, T. V., and Kurosawa, K. (2017). Arsenic, cadmium, lead, and chromium concentrations in irrigated and rain-fed rice and their dietary intake implications. Australian Journal of Crop Science, 11(7), 806 – 812. doi :10.21475/ajcs.17.11.07. pne408.
  27. Kanu, A. S., Ashraf, U., Mo, Z., Fuseini, I., Mansaray, L. R., Duan, M., Pan, S., and Tang, X. (2017). Cadmium uptake and distribution in fragrant rice genotypes and related consequences on yield and grain quality traits. Journal of Chemistry, 2017, 1 – 9. DOI:10.1155/2017/1405878.
  28. Kibria, K. Q., Islam, M. A., Hoque, S., Siddique, M. A. B., Hossain, M. Z., and Islam, M. A. (2022). Variations in cadmium accumulation among amon rice cultivars in Bangladesh and associated human health risks. Environmental Science and Pollution Research, 29(26), 39888 – 39902. DOI:10.1007/s11356-022-18762-6.
  29. Kobayashi, J. (1978). Pollution by cadmium and the itai-itai disease in Japan. In Oeheme, F. W. (Ed.), Toxicity of Heavy Metals in the Environment. Marcel Dekker, New York, pp. 199 – 260.
  30. Kosolsaksakul, P., Farmer, J. G., Oliver, I. W., and Graham, M. C. (2014). Geochemical associations and availability of cadmium (Cd) in a paddy field system, northwestern Thailand. Environmental Pollution, 187, 153 – 161. DOI:10.1016/j.envpol.2014.01.006.
  31. Kudsen, D. and Peterson, G. A. (1982). Lithium, sodium, and potassium. Methods of Soil Analysis, 2, 225 – 245. DOI: 10.2134/agronmonogr9.2.2ed.c13.
  32. Kwon, J. C., Nejad, Z. D., and Jung, M. C. (2017). Arsenic and heavy metals in paddy soil and polished rice contaminated by mining activities in Korea. Catena, 148, 92 – 100. DOI: 10.1016/j.catena.2016.01.005.
  33. Li, Z., Wu, L., Luo, Y., and Christie, P. (2018). Changes in metal mobility assessed by EDTA kinetic extraction in three polluted soils after repeated phytoremediation using a cadmium/zinc hyperaccumulator. Chemosphere, 194, 432 – 440. DOI:10.1016/j.chemosphere.2017.12.005.
  34. Liao, G., Wu, Q., Feng, R., Guo, J., Wang, R., Xu, Y., and Mo, L. (2016). Efficiency evaluation for remediating paddy soil contaminated with cadmium and arsenic using water management, variety screening, and foliage dressing technologies. Journal of Environmental Management, 170, 116 – 122. DOI:10.1016/j.jenvman.2016.01.008.
  35. Liu, N., Jiang, Z., Li, X., Liu, H., Li, N., and Wei, S. (2020). Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Chemosphere, 241, 125106. DOI:10.1016/j.chemosphere.2019.125106.
  36. Majeed, A., Muhmood, A., Niaz, A., Ditta, A., and Rajpar, M. N. (2022). Comparative efficacy of different biochars and traditional manures in the attenuation of cadmium toxicity in rice (Oryza sativa L.). Arabian Journal of Geosciences, 15(2), 209. DOI:10.1007/s12517-022-09548-8.
  37. Majeed, A., Niaz, A., Rizwan, M., Imran, M., Alsahli, A. A., Alyemeni, M. N., & Ali, S. (2021). Effects of biochar, farm manure, and pressmud on mineral nutrients and cadmium availability to wheat (Triticum aestivum L.) in Cd‐contaminated soil. Physiologia Plantarum, 173(1), 191 – 200. DOI: 10.1111/ppl.13348.
  38. Meharg, A. A., Carey, M., Ralphs, K., McCreanor, C., Rahman, M., Hussain, M., and Meharg, C. (2023). Hidden hunger and hidden danger: Regional gradients in rice grain nutrient elements, vitamins B and E and toxicants arsenic and cadmium along a north–south transect of western Bangladesh. Exposure and Health, 1 – 12. DOI:10.1007/s12403-023-00587-4.
  39. Meharg, A. A., Norton, G., Deacon, C., Williams, P., Adomako, E. E., Price, A., and Islam, M. R. (2013). Variation in rice cadmium related to human exposure. Environmental Science and Technology, 47(11), 5613 – 5618. DOI:10.1021/es400521h.
  40. Mu, T., Wu, T., Zhou, T., Li, Z., Ouyang, Y., Jiang, J., Zhu, D., Hou, J., Wang, Z., and Luo, Y. (2019). Geographical variation in arsenic, cadmium, and lead of soils and rice in the major rice producing regions of China. Science of the Total Environment, 677, 373 – 381. DOI:10.1016/j.scitotenv. 2019.04.337.
  41. Mueez, M. L., Razzaque, M. A., Rabin, M. H., Rouf, M. A., and Zamil, S. S. (2019). Influence of cadmium on growth and nutrients content of three rice cultivars. Journal of Environmental Science, Toxicology and Food Technology, 13(4), 77 – 83. DOI:10.9790/2402-1304017783.
  42. Murphy, J. A. M. E. S. and Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31 – 36. DOI: 10.1016/S0003-2670(00)88444-5.
  43. Nazar, R., Iqbal, N., Masood, A., Khan, M. I. R., Syeed, S., and Khan, N. A. (2012). Cadmium toxicity in plants and role of mineral nutrients in its alleviation. American Journal of Plant Sciences, 3(10), 1476 – 1489. DOI:10.4236/ajps.2012.310178.
  44. Pan, L., Ma, J., Wang, X., and Hou, H. (2016). Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere, 148, 248 – 254. DOI:10.1016/j.chemosphere.2015.12.049.
  45. Qasemi, M., Shams, M., Sajjadi, S. A., Farhang, M., Erfanpoor, S., Yousefi, M., and Afsharnia, M. (2019). Cadmium in groundwater consumed in the rural areas of Gonabad and Bajestan, Iran: occurrence and health risk assessment. Biological Trace Element Research, 192, 106 – 115. DOI: 10.1007/s12011-019-1660-7.
  46. Rizk, A. H., Zaazaa, E. I., and Shawer, S. S. (2014). Effect of cadmium on yield, nutrient contents, and toxicity tolerance of some rice varieties. Middle East Journal of Applied Sciences, 4(4), 1110 – 1117.
  47. Rizwan, M., Ali, S., Adrees, M., Rizvi, H., Zia-ur-Rehman, M., Hannan, F., Qayyum, M.F., Hafeez, F., and Ok, Y. S. (2016). Cadmium stress in rice: Toxic effects, tolerance mechanisms, and management. Environmental Science and Pollution Research, 23, 17859 – 17879. DOI:10.1007/s11356-016-6436-4.
  48. Sebastian, A. and Prasad, M. N. V. (2014). Cadmium minimization in rice. Agronomy for Sustainable Development, 34, 155 – 173. DOI:10.1007/s13593-013-0152-y.
  49. Shahriar, S. M. S., Munshi, M., Hossain, M. S., Zakir, H. M., and Salam, S. M. A. (2023). Risk assessment of selected heavy metals contamination in rice grains in the Rajshahi city of Bangladesh. Journal of Engineering Science, 14(1), 29 – 41. DOI:10.3329/jes.v14i1.67633.
  50. Shanying, H. E., Xiaoe, Y., Zhenli, H. E., and Baligar, V. C. (2017). Morphological and physiological responses of plants to cadmium toxicity. Pedosphere, 27(3), 421 – 438. DOI:10.1016/S1002-0160(17)60339-4.
  51. Sobahan, M. A., Akter, N., and Hossain, M. F. (2023). The role of wood-based biochar on growth, yield, and cadmium uptake in rice (Oryza sativa L.) grown under cadmium stress. Journal of Agricultural Science, 56(1), 47 – 60.
  52. Sodango, T. H., Li, X., Sha, J., and Bao, Z. (2018). Review of the spatial distribution, source, and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. Journal of Health and Pollution, 8(17), 53 – 70. doi : 10.5696/2156-9614-8.17.53.
  53. Song, W., Chen, S., Liu, J., Li, C., Song, N., Ning, L. I., and Bin, L.I.U. (2015). Variation of Cd concentration in various rice cultivars and derivation of cadmium toxicity thresholds for paddy soil by species-sensitivity distribution. Journal of Integrative Agriculture, 14(9), 1845 – 1854. DOI:10.1016/S2095-3119(14)60926-6.
  54. Suwatvitayakorn, P., Ko, M. S., Kim, K. W., and Chanpiwat, P. (2020). Human health risk assessment of cadmium exposure through rice consumption in cadmium-contaminated areas of the Mae Tao sub-district, Tak, Thailand. Environmental Geochemistry and Health, 42, 2331 – 2344. DOI: 10.1007/s10653-019-00410-7.
  55. Tan, L., Zhu, Y., Fan, T., Peng, C., Wang, J., Sun, L., and Chen, C. (2019). OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochemical and Biophysical Research Communications, 512(1), 112 – 118. DOI:10.1016/j.bbrc.2019.03.024.
  56. Walkley, A. and Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29 – 38.
  57. Wang, Y., Jiang, X., Li, K., Wu, M., Zhang, R., Zhang, L., and Chen, G. (2014). Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: Physiological, biochemical and ultrastructural analyses. Biometals, 27, 389 – 401. DOI: 10.1007/s10534-014-9720-0.
  58. Wu, D., Yamaji, N., Yamane, M., Kashino-Fujii, M., Sato, K., and Feng Ma, J. (2016). The HvNramp5 transporter mediates uptake of cadmium and manganese, but not iron. Plant Physiology, 172(3), 1899 – 1910. DOI:10.1104/pp.16.01189.
  59. Xu, M., Yang, L., Chen, Y., Jing, H., Wu, P., and Yang, W. (2022). Selection of rice and maize varieties with low cadmium accumulation and derivation of soil environmental thresholds in karst. Ecotoxicology and Environmental Safety, 247, 114244. DOI: 10.1016/j.ecoenv.2022.114244.
  60. Xu, Z. M., Li, Q. S., Yang, P., Ye, H. J., Chen, Z. S., Guo, S. H., and Zeng, E. Y. (2017). Impact of osmoregulation on the differences in Cd accumulation between two contrasting edible amaranth cultivars grown on Cd-polluted saline soils. Environmental Pollution, 224, 89 – 97. DOI:10.1016/j.envpol. 2016.12.067.
  61. Yamaji, N., Xia, J., Mitani-Ueno, N., Yokosho, K., and Feng Ma, J. (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiology, 162(2), 927 – 939. DOI: 10.1104/pp.113.216564.
  62. Ye, X., Ma, Y., and Sun, B. (2012). Influence of soil type and genotype on Cd bioavailability and uptake by rice and implications for food safety. Journal of Environmental Sciences, 24(9), 1647 – 1654. DOI:10.1016/S1001-0742(11)60982-0.
DOI: https://doi.org/10.2478/agri-2024-0004 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 38 - 52
Submitted on: Feb 21, 2024
Accepted on: Oct 10, 2024
Published on: Dec 8, 2024
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Tamanna Akther Mukta, Mohammad Anamul Hoque, Farjana Jannat Shimo, Shofiqul Islam, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.