Have a personal or library account? Click to login

Arbuscular mycorrhizal fungi induced different proline accumulations in two sorghum accessions in a response to drought stress

Open Access
|Feb 2023

References

  1. Alotaibi, M. O., Saleh, A. M., Sobrinho, R. L., Sheteiwy, M. S., El-Sawah, A. M., Mohammed, A. E., and Elgawad, H. A. (2021). Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. Journal of Fungi, 7(7), 531. DOI: 10.3390/jof7070531.830490234209315
  2. Bahadur, A., Batool, A., Nasir, F., Jiang, S., Mingsen, Q., Zhang, Q., Pan, J., Liu, Y., and Feng, H. (2019). Mechanistic insights into arbuscular mycorrhizal fungi-mediated drought stress tolerance in plants. International Journal of Molecular Sciences, 20(17), 4199. DOI: 10.3390/ijms20174199.674727731461957
  3. Begum, N., Qin, C., Ahanger, M. A., Raza, S., Khan, M. I., Ashraf, M., Ahmed, N., and Zhang, L. (2019). Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Frontiers in Plant Sciences, 10, 1068. DOI: 10.3389/fpls.2019.01068.676148231608075
  4. Bhale, U. N. (2018). Arbuscular mycorrhizal fungi (AMF) status and diversity of weedy plants in degraded land. International Journal of Plant Pathology, 9, 1 ‒ 8. DOI: 10.3923/ijpp.2018.1.8.
  5. Birhane, E., Aregawi, K. and Giday, K. (2017). Changes in arbuscular mycorrhiza fungi spore density and root colonization of woody plants in response to exclosure age and slope position in the highlands of Tigray, Northern Ethiopia. Journal of Arid Environments, 142, 1 ‒ 10. DOI: 10.1016/j.jaridenv.2017.03.002.
  6. Boutasknit, A., Baslam, M., Ait-El-Mokhtar, M., Anli, M., Ben- Laouane, R., Douira, A., El Modafar, C., Mitsui, T., Wahbi, S., and Meddich, A. (2020). Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua l.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants (Basel), 9(1), 80. DOI: 10.3390/plants9010080.702044031936327
  7. Bray, E. A. (1997). Plant responses to water deficit. Trends Plant Sciences, 2, 48 – 54. DOI: 10.1016/S1360-1385(97)82562-9.
  8. Buchanan, C. D., Lim, S., Salzman, R. A., Kagiampakis, I., Morishige, D. T., Weers, B. D., Klein, R. R., Pratt, L. H., Cordonnier- Pratt, M-M., Klein, P. E., and Mullet, J. E. (2005). Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Molecular Biology, 58, 699 – 720. DOI: 10.1007/s11103-005-7876-2.16158244
  9. Cakmak, I. and Horst, J. H. (1991). Effects of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine Max). Physiologia Plantarum, 83, 463 ‒ 468. DOI: 10.1111/j.1399-3054.1991.tb00121.x.
  10. Campos, C., Carvalho, M., Brígido, C., Goss, M. J., Nobre, T. (2018). Symbiosis specificity of the preceding host plant can dominate but not obliterate the association between wheat and its arbuscular mycorrhizal fungal partners. Frontiers in Microbiology, 27(9), 2920. DOI: 10.3389/fmicb.2018.02920.627776930542338
  11. Cerovic, Z. G., Masdoumier, G., Ghozlen, N. B., and Latouche, G. (2012). A new optical leaf-clip meter for simutaneous non-destructive assessment of leaf chlorophyll and epidermal flavonoids. Physiologia Plantarum, 146, 251 ‒ 260. DOI: 10.1111/j.1399-3054.2012.01639.x.366608922568678
  12. Chagnon, P. L., Bradley, R. L., Maherali, H., and Klironomos, J. N. (2013). A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science, 18, 484 ‒ 491. DOI: 10.1016/j.tplants.2013.05.001.23756036
  13. Chen, W., Meng, P., Feng, H., and Wang, C. (2020). Effects of arbuscular mycorrhizal fungi on growth and physiological performance of Catalpa bungei C.A.Mey. under drought stress. Forests, 11(10), 1117. DOI: 10.3390/f11101117.
  14. Chiang, F., Mazdiyasni, O. and AghaKouchak, A. (2021). Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nature Communication, 12, 2754. DOI: 10.1038/s41467-021-22314-w.811522533980822
  15. Chun, S. C., Paramasivan, M. and Chandrasekaran, M. (2018). Proline accumulation influenced by osmotic stress in arbuscular mycorrhizal symbiotic plants. Frontiers in Microbiology, 9, 2525. DOI: 10.3389/fmicb.2018.02525.623287330459731
  16. Dai, A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Review: Climate Change, 2, 45 – 65. DOI: 10.1002/wcc.81.
  17. De Souza, A. A., Carvalho, A. J, Bastos, E. A., Portugal, A. F., Torres, L. G., Batista, P. S. C., Julio, M. P. M., Julio, B. H. M., and de Menezes, C.B. (2020). Grain sorghum grown under drought stress at pre- and post-flowering in semiarid environment. Journal of Agricultural Science, 12(4), 97 – 105. DOI: 10.5539/jas.v12n4p97.
  18. Devnarain, N., Crampton, B. G., Chikwamba, R., Becker, J. V. W., and O’Kennedy, M. M. (2016). Physiological responses of selected African sorghum landraces to progressive water stress and re-watering. South African Journal of Botany, 103, 61 ‒ 69. DOI: 10.1016/j.sajb.2015.09.008.
  19. Diannastiti, F. A., Utami, S. N. H. and Widada, J. (2022). The role of indigenous mycorrhizae of corn plants in various soil types in Gunung Kidul, Indonesia. Planta Tropika: Jurnal Agrosains (Journal of Agro Science), 10(1), 69 ‒ 83. DOI: 10.18196/pt.v10i1.11428.
  20. Dzionek, A., Dzik, J., Wojcieszyńska, D., and Guzik, U. (2018). Fluorescein diacetate hydrolysis using the whole biofilm as a sensitive tool to evaluate the physiological state of immobilized bacterial cells. Catalysts, 8, 434. DOI: 10.3390/catal8100434.
  21. Fan, Q. J. and Liu, J. H. (2011). Colonization with arbuscular mycorrhizal fungus affects growth, drought tolerance and expression of stress-responsive genes in Poncirus trifoliata. Acta Physiologiae Plantarum, 33, 1533 – 1542. DOI: 10.1007/s11738-011-0789-6.
  22. FAO (Food and Agriculture Organization) of the United Nations. (2020). FAOSTAT: food and agriculture online data database. http://faostat.fao.org [accessed on November 28, 2022].
  23. Gano, B., Dembele, J. S. B., Tovignan, T. K., Sine, B., Vadez, V., Diouf, D., and Audebert, A. (2021). Adaptation responses to early drought stress of West Africa sorghum varieties. Agronomy, 11, 443. DOI: 10.3390/agronomy11030443.
  24. García de León, D., Vahter, T., Zobel, M., Koppel, M., Edesi, L., Davison, J., Al-Quraishy, S., Hozzein, W. N., Moora, M., Oja, J., Vasar, M., and Öpik, M. (2020) Different wheat cultivars exhibit variable responses to inoculation with arbuscular mycorrhizal fungi from organic and conventional farms. PLoS ONE, 5(5), e0233878. DOI: 10.1371/journal.pone.0233878.725964232470094
  25. Goche, T., Shargie, N. G., Cummins, I., Brown, A. P., Chivasa, S., and Ngara R. (2020) Comparative physiological and root proteome analyses of two sorghum varieties responding to water limitation. Scientific Reports, 10, 11835. DOI: 10.1038/s41598-020-68735-3.736671032678202
  26. Green, V. S. S., Stott, D. E. E. and Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biology and Biochemistry, 38, 693 ‒ 701. DOI: 10.1016/j.soilbio.2005.06.020.
  27. Guo, X., Wang, Z., Zhang, J., Wang, P., Li, Y., and Ji, B. (2021). Host-specific effects of arbuscular mycorrhizal fungi on two caragana species in desert grassland. Journal of Fungi, 7, 1077. DOI: 10.3390/jof7121077.870832734947059
  28. Haney, R. L. and Haney, E. B. (2010). Simple and rapid laboratory method for rewetting dry soil for incubations. Communications in Soil Science and Plant Analysis, 41(12), 1493 ‒ 1501. DOI: 10.1080/00103624.2010.482171.
  29. Havrlentová, M., Kraic, J., Gregusová, V., and Kovácsová, B. (2021). Drought stress in cereals – A review. Agriculture (Poľnohospodárstvo), 67(2), 47 – 60. DOI: 10.2478/agri-2021-0005.
  30. Hazzoumi, Z., Moustakime, Y., El Hassan, E., and Joutei, K. A. (2015). Effect of arbuscular mycorrhizal fungi (AMF) and water stress on growth, phenolic compounds, glandular hairs, and yield of essential oil in basil (Ocimum gratissimum L). Chemical and Biological Technologies in Agriculture, 2, 10. DOI: 10.1186/s40538-015-0035-3.
  31. Hestrin, R., Kan, M., Lafler, M., Wollard, J., Kimbrel, J. A., Ray, P., Blazewicz, S., Stuart, R., Craven, K., Firestone, M., Nuccio, E., and Pett-Ridge, J. (2022). Plant-associated fungi support bacterial resilience following water limitation. ISME J, 16, 2752 – 2762. DOI: 10.1038/s41396-022-01308-6.966650336085516
  32. Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., and Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition ‒ current knowledge and future directions. Frontiers in Plant Science, 8, 1617. DOI: 10.3389/fpls.2017.01617.561068228974956
  33. Kanti, A., Ilyas, M. and Sudiana, I. M. (2018). Increase of citric acid production by Aspergillus niger Inacc F539 in sorghum’s juice medium amended with methanol. Jurnal Biologi Indonesia, 14(2), 155 ‒ 164. DOI: 10.14203/jbi.v14i2.3733.
  34. Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A., and Babalar, M. (2019) Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9, 19250. DOI: 10.1038/s41598-019-55889-y.691771531848429
  35. Li, J., Meng, B., Chai, H., Yang, X., Song, W., Li, S., Lu, A., Zhang, T., and Sun, W. (2019). Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis. Frontiers in Plant Science, 10, 499. DOI: 10.3389/fpls.2019.00499.650382031114594
  36. Li, Y. P., Ye, W., Wang, M., and Yan, X. (2009). Climate change and drought: a risk assessment of crop-yield impacts. Climate Research, 39, 31 – 46. DOI: 10.3354/cr00797.
  37. Li, Z., Wu, N., Meng, S., Wu, F., and Liu., T. (2020). Arbuscular mycorrhizal fungi (AMF) enhance the tolerance of Euonymus maackii Rupr. at a moderate level of salinity. PLoS One, 15(4), e0231497. DOI: 10.1371/journal.pone.0231497.715607432287291
  38. Liang, Y., Pan, F., Jiang, Z., Qiang, L., Pu, J., and Liu, K. (2022). Accumulation in nutrient acquisition strategies of arbuscular mycorrhizal fungi and plant roots in poor and heterogeneous soils of karst shrub ecosystems. BMC Plant Biology, 22, 188. DOI: 10.1186/s12870-022-03514-y.899666235410135
  39. Liu, H., Khan, M. Y., Carvalhais, L. C., Delgado-Baquerizo, M., Yan, L., Crawford, M., Dennis, P. G., Singh, B., and Schenk, P. M. (2019). Soil amendments with ethylene precursor alleviate negative impacts of salinity on soil microbial properties and productivity. Scientific Reports, 9(1), 1 – 13. DOI: 10.1038/s41598-019-43305-4.649980131053834
  40. Martignago, D., Rico-Medina, A., Blasco-Escámez, D., Fontanet- Manzaneque, J. B., and Caño-Delgado, A. I. (2020). Drought resistance by engineering plant tissue-specific responses. Frontiers in Plant Sciences, 10, 1676. DOI: 10.3389/fpls.2019.01676.698772632038670
  41. Millar, N. S. and Bennett, A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia, 182, 625 – 641. DOI: 10.1007/s00442-016-3673-7.504300027350364
  42. Muneer, M. A., Tarin, M. W. K., Chen, X., Afridi, M. S., Iqbal, A., Munir, M. Z., Zheng, C., Zhang, J., and Ji, B. (2022). Differential response of mycorrhizal fungi linked with two dominant plant species of temperate grassland under varying levels of N-addition. Applied Soil Ecology, 170, 104272. DOI: 10.1016/j.apsoil.2021.104272.
  43. Rahimi, A. and Madah Hosseini, S. (2010). Variation of leaf water potential, relative water content and SPAD under gradual drought stress and stress recovery in two medicinal species of Plantago ovata and P. psyllium. Plant Ecophysiology, 2(2010), 53 ‒ 60.
  44. Ratnavathi, C. V. and Patil, J. V. (2013) Sorghum utilization as food. Journal of Nutrition and Food Sciences, 4, 247. DOI: 10.4172/2155-9600.1000247.
  45. Ray, R. C., Uppuluri, K. B., Trilokesh, C., Lareo, C. (2019). Sweet sorghum for bioethanol production: scope, technology, and economics. Chapter 5. Bioethanol Production from Food Crops, 81 ‒ 100. Cambridge: Academic Press. DOI: 10.1016/B978-0-12-813766-6.00005-9.
  46. Santoso, S. B., Pabbage, M. and Pabendon, M. B. (2013). Plasma nutfah sorgum [sorghum germplasms] In Damardjati Sumarno, Syam D.S., Hermanto M (Eds.), Sorgum: Inovasi Teknologi Dan Pengembangan [Sorghum: Technology Innovation and Development], Bogor: IAARD Press, pp. 69 ‒ 93.
  47. Symanczik, S., Lehmann, M. F., Wiemken, A. Boller, T., and Courty, P-E. (2018). Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought. Mycorrhiza, 28, 779 – 785. DOI: 10.1007/s00572-018-0853-9.30006910
  48. Selle, P. H., Moss, A. F., Truong, H. H., Khoddami, A., Cadogan, D. J., Godwin, I. D., and Liu, S. Y. (2018). Outlook: Sorghum as a feed grain for Australian chicken-meat production. Animal Nutrition, 4(1), 17 – 30. DOI: 10.1016/j.aninu.2017.08.007.611236730167480
  49. Sukri, M. Z., Firgiyanto, R., Sari, V. K., and Basuki. (2019). Kombinasi pupuk kandang sapi, asam humat dan mikoriza terhadap infeksi akar bermikoriza tanaman cabai dan ketersediaan unsur hara tanah udipsamments. Journal Penelitian Pertanian Terapan, 19(2), 141 ‒ 145. DOI: 10.25181/jppt.v19i2.1450.
  50. Sun, X., Shi, J. and Ding, G. (2017). Combine effect of arbuscular mycorrhiza and drought stress on plant growth and mortality of forage sorghum. Applied Soil Ecology, 119, 384 ‒ 391. DOI: 10.1016/j.apsoil.2017.07.030.
  51. Tabatabai. M. A. (1994). Soil Enzymes, Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, 775 ‒ 833. Madison: Soil Science Society of America. DOI: 10.2136/sssabookser5.2.c37.
  52. Tang, H., Hassan, M. U., Feng, L., Nawaz, M., Shah, A. N., Qari, S. H., Liu, Y., and Miao, J. (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Sciences, 13, 919166. DOI: 10.3389/fpls.2022.919166.929855335873982
  53. Tari, I., Laskay, G., Takács, Z., and Poor, P. (2013). Response of sorghum to abiotic stresses: A review. Journal of Agronomy and Crops Sciences, 199(4), 264 – 274. DOI: 10.1111/jac.12017.
  54. Trenberth, K., Dai, A., van der Schrier, G., Jones P. D., Barichivich, J., Briffa, K. R., and Sheffield, J. (2014). Global warming and changes in drought. Nature Climate Change, 4, 17 – 22. DOI: 10.1038/nclimate2067.
  55. Torrecillas, E., Alguacil, M. M. and Roldán, A. (2012). Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Applied and Environmental Microbiology, 78(17), 6180 ‒ 6186. DOI: 10.1128/AEM.01287-12.341661022752164
  56. Wahyuni, Y., Miyamoto, T., Hartati, H., Widjayantie, D., Windiastri, V. E., Sulistyowati, Y., Rachmat, A., Hartati, N. S., Ragamustari, S. K., Tobimatsu, Y., Nugroho, S., and Umezawa, T. (2019). Variation in lignocellulose characteristics of 30 Indonesian sorghum (Sorghum bicolor) accessions. Industrial Crops and Products, 142, 111840. DOI: 10.1016/j.indcrop.2019.111840.
  57. Wang, X., Feng, H., Wang, Y., Wang, M., Xie, X., Chang, H., Wang, L., Qu, J., Sun, K., He, W., Wang, C., Dai, C., Chu, Z., Tian, C., Yu, N., Zhang, X., Liu, H., and Wang, E. (2021). Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis. Molecular Plant, 14(3), 503 ‒ 516. DOI: 10.1016/j.molp.2020.12.002.33309942
  58. Wang, Y., Lin, J., Yang, F., Tao, S., Yan, X., Zhou, Z., and Zhang, Y. (2022). Arbuscular mycorrhizal fungi improve the growth and performance in the seedlings of Leymus chinensis under alkali and drought stresses. PeerJ, 10, e12890. DOI: 10.7717/peerj.12890.881826835186481
  59. Werner, G. D. A. and Kiers, E. T. (2015). Partner selection in the mycorrhizal mutualism. New Phytologist, 205, 1437 ‒ 1442. DOI: 10.1111/nph.13113.25421912
  60. Wiloso, E. I, Setiawan, A. A. R., Prasetia, H., Muryanto, M., Wiloso, A. R., Subiyakto, S., Sudiana, I. M, Lestari, R., Nugroho, S., Hermawan, D., Fang, K., and Heijungs, R. (2020). Production of sorghum pellets for electricity generation in Indonesia: A life cycle assessment. Biofuel Research Journal, 7(3), 1178 ‒ 1194. DOI: 10.18331/BRJ2020.7.3.2.
  61. Wu, S., Shi, Z., Chen, X., Gao, J., and Wang, X. (2022). Arbuscular mycorrhizal fungi increase crop yields by improving biomass under rainfed condition: a meta-analysis. PeerJ, 10, e12861. DOI: 10.7717/peerj.12861.881536435178300
  62. Xiong, Y., Zhang, P., Warner, R. D., and Fang, Z. (2019). Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Comprehensive Reviews in Food Science and Food Safety, 18(6), 2025 – 2046. DOI: 10.1111/1541-4337.12506.33336966
  63. Yang, J., Zhang, N., Ma, C., Qu, Y., Si, H., and Wang, D. (2013). Prediction and verification of microRNAs related to proline accumulation under drought stress in potato. Computational Biology and Chemistry, 46, 48 – 54. DOI: 10.1016/j.compbiolchem.2013.04.006.23764530
  64. Yao, Q., Zhu, H. H., Hu, Y. L., and Li, L. Q. (2008). Differential influence of native and introduced arbuscular mycorrhizal fungi on growth of dominan and subordinate plants. Plant Ecol, 196, 261 ‒ 268. DOI: 10.1007/s11258-007-9350-5.
  65. Yooyongwech, S., Phaukinsang, N., Cha-um, S., and Supaibulwatana K. (2013). Arbuscular mycorrhiza improved growth performance in Macadamia tetraphylla L. grown under water deficit stress involves soluble sugar and proline accumulation. Plant Growth Regulation, 69, 285 – 293. DOI: 10.1007/s10725-012-9771-6.
  66. Yulianto, Putri, D. N., Perdani, M. S., Arbiantia, R., Suryanegara, L., and Hermansyah, H. (2020). Effect of cellulose fiber from sorghum bagasse on the mechanical properties and biodegradability of polylactic acid. Energy Reports, 6(1), 221 – 226. DOI: 10.1016/j.egyr.2019.08.048.
  67. Zhang, Y., Luan, Q., Jiang, J., and Li, Y. (2021) Prediction and utilization of malondialdehyde in exotic pine under drought stress using near-infrared spectroscopy. Frontiers in Plant Science, 12, 735275. DOI: 10.3389/fpls.2021.735275.855820734733301
  68. Zhang, H., Zhao, Y., Zhu, J. K. (2020). Thriving under stress: how plants balance growth and the stress respon. Developmental Cell, 55, 529 ‒ 543. DOI:10.1016/j.devcel.2020.10.012.33290694
DOI: https://doi.org/10.2478/agri-2022-0012 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 127 - 142
Submitted on: Sep 26, 2022
Accepted on: Dec 21, 2022
Published on: Feb 18, 2023
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Idris Idris, Agusdin Dharma Fefirenta, Vega Kartika Sari, I Made Sudiana, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.