Have a personal or library account? Click to login
Open Access
|Feb 2023

References

  1. Adams, M. J. and Antoniw, J. F. 2005. DPVweb: an open access internet resource on plant viruses and virus diseases. Outlooks on Pest Management, 16, 268 ‒ 270.10.1564/16dec08
  2. Avasare, V., Zhang, Z., Avasare, D., Khan, I., and Qurashi, A. (2015). Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. International Journal of Energy Research, 39(12), 1714 ‒ 1719. DOI: 10.1002/er.3372.
  3. Averre, C. W. and Gooding (2000). Virus diseases of greenhouse tomato and their mangment. Available at: http://www.cesncsu.edu/depts./pp/notes/oldnites/vg15.htm.
  4. Bradamante, G., Mittelsten, S. O. and Incarbone, M. (2021). Under siege: virus control in plant meristems and progeny. Plant Cell, 33(8), 2523 – 2537. DOI: 10.1093/plcell/koab140.840845334015140
  5. Bragard, C., Caciagli, P., Lemaire, O., Lopez-Moya, J. J., Mac- Farlane, S., Peters, D., Susi, P., and Torrance, L. (2013). Status and prospects of plant virus control through interference with vector transmission. Annual Review of Phytopathology, 51(1), 177 – 201. DOI: 10.1146/annurev-phyto-082712-102346.23663003
  6. Cao, Y., Zhou, H., Zhou, X., and Li, F. (2020). Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Frontiers in Microbiology, 11, 1 ‒ 9. DOI: 10.3389/fmicb.2020.593700.764927233193268
  7. Cobos, A., Montes, N., López-Herranz, M., Gil-Valle, M., and Pagán, I. (2019). Within-host multiplication and speed of colonization as infection traits associated with plant virus vertical transmission. Journal of Virology, 93(23), 1078 – 19. DOI: 10.1128/jvi.01078-19.685448031511374
  8. Constable, F., Daly A., Terras M. A., Penrose L., and Dall, D. (2018). Detection in Australia of cucumber green mottle mosaic virus in seed lots of cucurbit crops. Australian Plant Disease, Notes, 13(1), 18p. DOI:10.1007/s13314-018-0302-9.
  9. Cordero, T., Mohamed, M. A., Lopez-Moya, J. J., and Daròs, J. A. (2017). A recombinant potato virus y infectious clone tagged with the rosea1 visual marker (pvy-ros1) facilitates the analysis of viral infectivity and allows the production of large amounts of anthocyanins in plants. Frontiers in Microbiology, 8(611), 1 ‒ 11. DOI: 10.3389/fmicb.2017.00611.538221528428782
  10. Dombrovsky, A., Tran-Nguyen, L. T. T. and Jones R. A. C. (2017). Cucumber green mottle mosaic virus: Rapidly increasing global distribution, etiology, epidemiology, and management. Annual Review of Phytopathoogy, 55, 231 – 256. DOI: 10.1146/annurev-phyto-080516-035349.28590876
  11. Elbeshehy, E. K., Elazzazy, A. M. and Aggelis, G. (2015). Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against Bean Yellow Mosaic Virus and human pathogens. Frontiers in Microbiology, 6, 453. DOI: 10.3389%2Ffmicb.2015.00453.
  12. Garcia-Doval, C. and Jinek, M. (2017). Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases. Current Opinion in Structural Biology, 47, 157 – 166. DOI: 10.1016/j.sbi.2017.10.015.29107822
  13. Gooding, J. R. and Suggs, E. G. (1976). Seed borne tobacco mosaic virus in commercial sources of tomato seed. In Plant Dissease Report, 60, 441 ‒ 442.
  14. Golobič, M., Jemec, A., Drobne, D., Romih, T., Kasemets, K., and Kahru, A. (2012). Upon exposure to Cu nanoparticles, accumulation of copper in the isopod Porcellio scaber is due to the dissolved Cu ions inside the digestive tract. Environmental science & technology, 46(21), 12112 ‒ 12119. DOI: 10.1021/es3022182.23046103
  15. Hadidi, A., Flores, R., Candresse, T., and Barba, M. (2016). Next-generation sequencing and genome editing in plant virology. Frontiers in Microbiology, 7(1325), 1 ‒ 12. DOI: 10.3389/fmicb.2016.01325.499943527617007
  16. Hao, Y., Cao, X., Ma, C., Zhang, Z., Zhao, N., Ali, A., and Rui, Y. (2017). Potential applications and antifungal activities of engineered nanomaterials against gray mold disease agent Botrytis cinerea on rose petals. Frontiers in Plant Science, 8 (1332), 1‒9. DOI: 10.3389/fpls.2017.01332.553909228824670
  17. Hipper, C., Brault, V., Ziegler-Graff, V., and Revers, F. (2013). Viral and cellular factors involved in phloem transport of Plant Viruses. Frontiers in Plant Science, 4(154), 1 ‒ 25. DOI: 10.3389/fpls.2013.00154.366287523745125
  18. Hogenhout, S. A., Ammar, E. D., Whitfield, A. E., and Redinbaugh, M. G. (2008). Insect vector interactions with persistently transmitted viruses. Annual Review of Phytopathology, 46, 327 – 359. DOI: 10.1146/annurev.phyto.022508.092135.18680428
  19. Hrudova, E., Pokorny, R. and Vichova, J. (2006). Integrated Plant Protection. 1 st ed. Brno: Mendel University of Agriculture and Forestry in Brno. 151p. (in Czech).
  20. Hsu, P., Scott, D., Weinstein, J., Ran, F., Konermann, S., Agarwala, V., et al. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31(9), 827 – 832. doi :10.1038/nbt.2647.396985823873081
  21. Hull, R. (2014). Chapter 12 ‒ plant to plant movement. In Hull, R. (Ed.) Plant Virology, fifth ed. Academic Press, Boston. pp. 669 – 751.10.1016/B978-0-12-384871-0.00012-1
  22. International Committee on Taxonomy of Viruses Executive Committee (2020). The new scope of virus taxonomy: Partitioning the virosphere into 15 hierarchical ranks. Nature Microbiology, 5, 668 – 674. DOI: 10.1038/s41564-020-0709-x.718621632341570
  23. James, C. K. NG. and Keith, L. P. (2004). Transmission of plant viruse by aphid vector. Molecular Plant Pathology, 5(5), 505 ‒ 511. DOI: 10.1111/j.1364-3703.2004.00240.x.20565624
  24. Ji, X., Wang, D. and Gao, C. (2019). CRISPR editing-mediated antiviral immunity: a versatile source of resistance to combat plant virus infections. Science China Life Sciences, 62 (9), 1246 – 1249. DOI: 10.1007/s11427-019-9722-2.31418136
  25. Jones, R. A. C. (2016). Future scenarios for plant virus pathogens as climate change progresses. Advances in Virus Research, 95, 87 – 147. DOI: 10.1016/bs.aivir.2016.02.004.27112281
  26. Jones, R. A. C. (2018). Chapter Six ‒ Plant and insect viruses in managed and natural environments: Novel and neglected transmission pathways. Advances in Virus Research, 101, 149 – 187. DOI: 10.1016/bs.aivir.2018.02.006.29908589
  27. Jones, R. A. C. (2020). Disease pandemics and major epidemics arising from new encounters between indigenous viruses and introduced crops. Viruses, 12(12), 1388. DOI:10.3390/v12121388.776196933291635
  28. Khan, A. A., Naqvi, Q. A., Khan, M. S., Singh, R., and Raj, S. K. (2005). First report of a begomovirus infecting Calendula in India. Plant Pathology, 54(4), 569 ‒ 569. DOI: 10.1111/j.1365-3059.2005.01220.x.
  29. Langner, T., Kamoun, S. and Belhaj, K. (2018). CRISPR crops: plant genome editing toward disease resistance. Annual Review of Phytopathology, 56, 479 – 512. DOI: 10.1146/annurev-phyto-080417-050158.29975607
  30. Li, F., Liu, W. and Zhou, X. (2019). Pivoting plant immunity from theory to the field. Science China Life Sciences, 62 (11), 1539 – 1542. DOI: 10.1007/s11427-019-1565-1.31686321
  31. Loureiro, A., Azoia, N. G., Gomes, A. C., and Cavaco-Paulo, A. (2016). Albumin-based nanodevices as drug carriers. Current Pharmaceutical Design, 22(10), 1371 – 1390. doi :10.2174/1381612822666160125114900.26806342
  32. Ma, X., Zhu, Q., Chen, Y., and Liu, Y. (2016). CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Molecular Plant, 9(7), 961 – 974. DOI: 10.1016/j.molp.2016.04.009.27108381
  33. Mahas, A. and Mahfouz, M. (2018). Engineering virus resistance via CRISPR-Cas systems. Current Opinion in Virology, 32, 1 – 8. DOI: 10.1016/j.coviro.2018.06.002.30005359
  34. Makarova, K., Wolf, Y., Alkhnbashi, O., Costa, F., Shah, S., Saunders, S., et al. (2015). An updated evolutionary classification of CRISPR-Cas systems. Nature Reviews Microbiology, 13, 722 – 736. DOI: 10.1038/nrmicro3569.542611826411297
  35. Makarova, K. S., Zhang, F. and Koonin, E. V. (2017a). Snap- Shot: class 1 CRISPR-Cas systems. Cell, 168(5), 946 ‒ 946. DOI: 10.1016/j.cell.2017.02.018.28235204
  36. Makarova, K. S., Zhang, F. and Koonin, E. V. (2017b). Snap- Shot: class 2 CRISPR-Cas systems. Cell, 168, 328. DOI: 10.1016/j.cell.2016.12.038.28086097
  37. Montes, N. and Pagán, I. (2019). Light intensity modulates the efficiency of virus seed transmission through modifications of plant tolerance. Plan Theory, 8(9), 304. DOI: 10.3390/plants8090304.678393831461899
  38. Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 1 – 9. DOI: 10.4172/2161-0444.1000247.
  39. Ning, F., Shao, M., Xu, S., Fu, Y., Zhang, R., Wei, M., and Duan, X. (2016). TiO 2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy & Environmental Science, 9(8), 2633 ‒ 2643.10.1039/C6EE01092J
  40. Pradhanang, P. M. (2009). Tomato mosaic virus: Does it transmit through tomato seeds? Acta Horticulturae, 808, 87 ‒ 94.10.17660/ActaHortic.2009.808.11
  41. Ripp, S. and Henry, T. B. (2012). Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Treats around US. ACS symposium series, 1079. Publisher: American Chemical Society.10.1021/bk-2011-1079
  42. Sevík, M. A. and Tohumcu, E. K. (2011). The ELISA analysis results in tomato (Lycopersicon esculenutm MILL.) seed health testing fot Tobacco mosaic virus. Žemdirbyste = Agriculture, 98(3), 301 ‒ 306.
  43. Schoelz, J. E., Harries, P. A. and Nelson, R. S. (2011). Intracellular transport of plant viruses: finding the door out of the cell. Molecular Plant, 4(5), 813 – 831. DOI: 10.1093/mp/ssr070.318339821896501
  44. Singh, S., Awasthi, L. P. and Jangre, A. (2020). Transmission of plant viruses in fields through various vectors. Applied Plant Virology, 313 – 334. DOI: 10.1016/b978-0-12-818654-1.00024-4.
  45. Shmakov, S., Smargon, A., Scott, D., Cox, D., Pyzocha, N., Yan, W., et al. (2017). Diversity and evolution of class 2 CRISPR-Cas systems. Nature Reviews Microbiology, 15, 169 – 182. DOI: 10.1038/nrmicro.2016.184.585189928111461
  46. Seo, JK. and Kim, KH. (2016). Long-distance movement of viruses in plants. In Wang, A. and Zhou, X. (Eds.) Current Research Topics in Plant Virology. Springer, Cham. pp. 153 ‒ 172. DOI:10.1007/978-3-319-32919-2_6.
  47. Srivastava, A. and Singh, R. (2021). Nanoparticles for sustainable agriculture and their effect on plants. Current Nanoscience, 17(1), 58 ‒ 69.10.2174/1573413716999200403152439
  48. Trebicki, P. (2020). Climate change and plant virus epidemiology. Virus Research, 286, 198059. DOI: 10.1016/j.virusres.2020.198059.32561376
  49. Wang, Y., Sun, C., Xu, C., Wang, Z., Zhao, M., Wang, C., Liu, L., and Chen, F. (2016). Preliminary experiments on nano-silver against tobacco mosaic virus and its mechanism. Tobacco Science and Technology, 49, 22 ‒ 30. DOI: 10.16135/j.issn1002-0861.20160104.
  50. Zhang, Y., Malzahn, A., Sretenovic, S., and Qi, Y. (2019b). The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 5, 778 – 794. DOI: 10.1038/s41477-019-0461-5.31308503
  51. Zhuang, J. and Gentry, R. W. (2011). Environmental application and risks of nanotechnology: a balanced view. In Ripp, S. and Henry, T.B. (Eds.) Biotechnology and Nanotechnology Risk Assessment: Minding and Managing the Potential Threats Around Us. ACS Symposium Series, 1079. American Chemical Society, pp. 41 ‒ 67.10.1021/bk-2011-1079.ch003
DOI: https://doi.org/10.2478/agri-2022-0011 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 119 - 126
Submitted on: Nov 4, 2022
Accepted on: Jan 27, 2023
Published on: Feb 18, 2023
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 times per year

© 2023 Simona Grešíková, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.