Have a personal or library account? Click to login
Effect of Chicken Manure-Based Fertiliser on Bacterial Communities and Diversity of Tomato Endosphere Microbiota Cover

Effect of Chicken Manure-Based Fertiliser on Bacterial Communities and Diversity of Tomato Endosphere Microbiota

Open Access
|Nov 2021

References

  1. Allard, S.M., Walsh, C.S., Wallis, A.E., Ottesen, A.R., Brown, E.W., and Micallef, S.A. 2016. Solanum lycopersicum (tomato) hosts robust phyllosphere and rhizosphere bacterial communities when grown in soil amended with various organic and synthetic fertilizers. Science of the Total Environment, 573, 555 ‒ 563. DOI:10.1016/j.scitotenv.2016.08.157.10.1016/j.scitotenv.2016.08.157
  2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403 ‒ 10. DOI:10.1016/S0022-2836(05)80360-2.10.1016/S0022-2836(05)80360-2
  3. Bebber, D.P. and Richards, V.R. (2020). A meta-analysis of the effect of organic and mineral fertilizers on soil microbial diversity. bioRxiv, DOI:2020.10.04.325373.10.1101/2020.10.04.325373
  4. Beecher, G.R. (1998). Nutrient content of tomatoes and tomato products. Experimental Biology and Medicine, 218(2), 98 ‒ 100. DOI:10.3181/00379727-218-44282a.10.3181/00379727-218-44282a9605204
  5. Berg, G., Eberl, L., and Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental microbiology, 7(11), 1673 ‒ 1685. DOI:10.1111/j.1462-2920.2005.00891.x.10.1111/j.1462-2920.2005.00891.x16232283
  6. Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E., and Schulze-Lefert, P. (2013). Structure and functions of the bacterial microbiota of plants. Annual Review of Plant Biology, 64, 807 ‒ 38. DOI:10.1146/annurev-arplant-050312-120106.10.1146/annurev-arplant-050312-12010623373698
  7. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., Huttley, G.A., Kelley, S.T., Knights, D., Koenig, J.E., Ley, R.E., Lozupone, C.A., McDonald, D., Muegge, B.D., Pirrung, M., Reeder, J., Sevinsky, J.R., Turnbaugh, P.J., Walters, W.A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335 ‒ 336. DOI:10.1038/nmeth.f.303.10.1038/nmeth.f.303315657320383131
  8. Cheng, D., Tian, Z., Feng, L., Xu, L., and Wang, H. (2019). Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ, 6, e6162. DOI:10.7717/peerj.6162.10.7717/peerj.6162632788530643678
  9. Dombrowski, N., Schlaeppi, K., Agler, M.T., Hacquard, S., Kemen, E., Garrido-Oter, R., Wunder, J., Coupland, G., and Schulze-Lefert, P. (2017). Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. The Isme Journal, 11(1), 43 ‒ 55. DOI:10.1038/ismej.2016.109.10.1038/ismej.2016.109509746427482927
  10. Dong, C.-J., Wang, L.-L., Li, Q., and Shang, Q.-M. (2019). Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PloS one, 14(11), e0223847-e0223847. DOI:10.1371/journal.pone.0223847.10.1371/journal.pone.0223847683984531703074
  11. Duncan, J. (2005). Composting chicken manure. WSU cooperative extension. King County Master Gardner and Cooperative Extension Livestock Advisor, Washington State University, Pullman. Retrieved 11 Nov 2017.
  12. Edgar, R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26(19), 2460 ‒ 1. DOI:10.1093/bioinformatics/btq461.10.1093/bioinformatics/btq46120709691
  13. Eo, J. and Park, K.-C. (2016). Long-term effects of imbalanced fertilization on the composition and diversity of soil bacterial community. Agriculture, Ecosystems & Environment, 231, 176 ‒ 182. DOI: org/10.1016/j.agee.2016.06.039.10.1016/j.agee.2016.06.039
  14. Geisseler, D. and Scow, K.M. (2014). Long-term effects of mineral fertilizers on soil microorganisms–A review. Soil Biology and Biochemistry, 75, 54 ‒ 63. DOI:10.1016/j.soilbio.2014.03.023.10.1016/j.soilbio.2014.03.023
  15. Green, S.J., Prakash, O., Jasrotia, P., Overholt, W.A., Cardenas, E., Hubbard, D., Tiedje, J.M., Watson, D.B., Schadt, C.W., and Brooks, S.C. (2012). Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Applied and Environmental Microbiology, 78(4), 1039 ‒ 1047. DOI:10.1128/AEM.06435-11.10.1128/AEM.06435-11327302222179233
  16. Guron, G.K., Arango-Argoty, G., Zhang, L., Pruden, A., and Ponder, M.A. (2019). Effects of dairy manure-based amendments and soil texture on lettuce-and radish-associated microbiota and resistomes. Msphere, 4(3), 13 ‒ 19. DOI:10.1128/mSphere.00239-19.10.1128/mSphere.00239-19650661931068435
  17. Haas, D. and Défago, G. (2005). Biological control of soil-borne pathogens by fluorescent pseudomonads. Nature Reviews Microbiology, 3(4), 307 ‒ 319. DOI:10.1038/nrmicro1129.10.1038/nrmicro112915759041
  18. Hallmann, J., Quadt-Hallmann, A., Mahaffee, W., and Kloepper, J. (1997). Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology, 43(10), 895 ‒ 914. DOI: 10.1139/M97-131.10.1139/m97-131
  19. Hartmann, M., Frey, B., Mayer, J., Mäder, P., and Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal, 9(5), 1177 ‒ 1194. DOI:10.1038/ismej.2014.210.10.1038/ismej.2014.210440916225350160
  20. Ji, L., Wu, Z., You, Z., Yi, X., Ni, K., Guo, S., and Ruan, J. (2018). Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: A 10-year field trial in a tea plantation. Agriculture, Ecosystems & Environment, 268, 124 ‒ 132. DOI:10.1007/s00374-020-01439-y.10.1007/s00374-020-01439-y
  21. Kamau, D., Spiertz, J., and Oenema, O. (2008). Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant and Soil, 307(1), 29 ‒ 39. DOI:10.1007/s11104-008-9576-6.10.1007/s11104-008-9576-6
  22. Lee, S.A., Kim, Y., Kim, J.M., Chu, B., Joa, J.-H., Sang, M.K., Song, J. and Weon, H.-Y. (2019). A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Scientific Reports, 9(1), 1 ‒ 15. DOI: org/10.1038/s41598-019-45660-8.10.1038/s41598-019-45660-8659496231243310
  23. Li, C., Yan, K., Tang, L., Jia, Z., and Li, Y. (2014). Change in deep soil microbial communities due to long-term fertilization. Soil Biology and Biochemistry, 75, 264 ‒ 272. DOI:10.1016/j.soilbio.2014.04.023.10.1016/j.soilbio.2014.04.023
  24. Lin, L., Ge, H.M., Yan, T., Qin, Y.H., and Tan, R.X. (2012). Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta, 236(6), 1849 ‒ 1861. DOI:10.1007/s00425-012-1741-8.10.1007/s00425-012-1741-822922880
  25. Loper, J.E., Hassan, K.A., Mavrodi, D.V., Davis II, E.W., Lim, C.K., Shaffer, B.T., Elbourne, L.D., Stockwell, V.O., Hartney, S.L., and Breakwell, K. (2012). Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet, 8(7), e1002784. DOI:10.1371/journal.pgen.1002784.10.1371/journal.pgen.1002784339038422792073
  26. Lundberg, D.S., Lebeis, S.L., Paredes, S.H., Yourstone, S., Gehring, J., Malfatti, S., Tremblay, J., Engelbrektson, A., Kunin, V., and Del Rio, T.G. (2012). Defining the core Arabidopsis thaliana root microbiome. Nature, 488(7409), 86 ‒ 90. DOI:10.1038/nature11237.10.1038/nature11237407441322859206
  27. Luo, L., Wang, P., Zhai, Z., Su, P., Tan, X., Zhang, D., Zhang, Z., and Liu, Y. (2019). The effects of Rhodopseudomonas palustris PSB06 and CGA009 with different agricultural applications on rice growth and rhizosphere bacterial communities. AMB Express, 9(1), 1 ‒ 10. DOI:10.1186/s13568-019-0897-z.10.1186/s13568-019-0897-z682341931673871
  28. Magoč, T. and Salzberg, S.L. (2011). FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957 ‒ 63. DOI:10.1093/bioinformatics/btr507.10.1093/bioinformatics/btr507319857321903629
  29. Manching, H.C., Balint-Kurti, P.J., and Stapleton, A.E. (2014). Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Frontiers in Plant Science, 5, 403. DOI:10.3389/fpls.2014.00403.10.3389/fpls.2014.00403413365025177328
  30. Martin, M. (2011). Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet Journal, 17(1), 10. DOI:10.14806/ej.17.1.200.10.14806/ej.17.1.200
  31. Peiffer, J.A., Spor, A., Koren, O., Jin, Z., Tringe, S.G., Dangl, J.L., Buckler, E.S., and Ley, R.E. (2013). Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the National Academy of Sciences, 110(16), 65486553. DOI:10.1073/pnas.1302837110.10.1073/pnas.1302837110363164523576752
  32. Schreiter, S., Babin, D., Smalla, K., and Grosch, R. (2018). Rhizosphere competence and biocontrol effect of Pseudomonas sp. RU47 independent from plant species and soil type at the field scale. Frontiers in Microbiology, 9, 97. DOI:10.3389/fmicb.2018.00097.10.3389/fmicb.2018.00097579923929449832
  33. Smit, E., Leeflang, P., Gommans, S., van den Broek, J., van Mil, S., and Wernars, K. (2001). Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Applied and Environmental Microbiology, 67(5), 2284 ‒ 2291. DOI:10.1128/AEM.67.5.2284-2291.2001.10.1128/AEM.67.5.2284-2291.2001
  34. Sturz, A.V., Christie, B.R., and Nowak, J. (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 19(1), 1 ‒ 30. DOI:10.1080/07352680091139169.10.1080/07352680091139169
  35. Tian, B., Zhang, C., Ye, Y., Wen, J., Wu, Y., Wang, H., Li, H., Cai, S., Cai, W., and Cheng, Z. (2017). Beneficial traits of bacterial endophytes belonging to the core communities of the tomato root microbiome. Agriculture, Ecosystems & Environment, 247, 149 ‒ 156. DOI:10.1016/j.agee.2017.06.041.10.1016/j.agee.2017.06.041
  36. Torsvik, V. and Øvreås, L. (2002). Microbial diversity and function in soil: from genes to ecosystems. Current Opinion in Microbiology, 5(3), 240 ‒ 245. DOI:10.1016/s1369-5274(02)00324-7.10.1016/S1369-5274(02)00324-7
  37. Turner, T.R., James, E.K., and Poole, P.S. (2013). The plant microbiome. Genome Biol, 14(6), 209. DOI:10.1186/gb-2013-14-6-209.10.1186/gb-2013-14-6-209370680823805896
  38. van Elsas, J.D., Chiurazzi, M., Mallon, C.A., Elhottova, D., Kristufek, V., and Salles, J.F. (2012). Microbial diversity determines the invasion of soil by a bacterial pathogen. Proceedings of the National Academy of Sciences of the USA, 109(4), 1159 ‒ 64. DOI:10.1073/pnas.1109326109.10.1073/pnas.1109326109326828922232669
  39. Wang, X., Van Nostrand, J.D., Deng, Y., Lü, X., Wang, C., Zhou, J., and Han, X. (2015). Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China’s grasslands. FEMS Microbiology Ecology, 91(12). DOI:10.1093/femsec/fiv133.10.1093/femsec/fiv13326519142
  40. Weller, D.M., Raaijmakers, J.M., Gardener, B.B.M., and Thomashow, L.S. (2002). Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annual Review of Phytopathology, 40(1), 309 ‒ 348. DOI:10.1146/annurev.phyto.40.030402.110010.10.1146/annurev.phyto.40.030402.11001012147763
  41. Xiao, Y., Liu, X., Meng, D., Tao, J., Gu, Y., Yin, H., and Li, J. (2018). The role of soil bacterial community during winter fallow period in the incidence of tobacco bacterial wilt disease. Applied Microbiology and Biotechnology, 102(5), 2399 ‒ 2412. DOI:10.1007/s00253-018-8757-3.10.1007/s00253-018-8757-329368216
  42. Xu, W., Wang, F., Zhang, M., Ou, T., Wang, R., Strobel, G., Xiang, Z., Zhou, Z., and Xie, J. (2019). Diversity of cultivable endophytic bacteria in mulberry and their potential for antimicrobial and plant growth-promoting activities. Microbiological Research, 229, 126328. DOI:10.1016/j.micres.2019.126328.10.1016/j.micres.2019.12632831521946
  43. Yang, H., Li, J., Xiao, Y., Gu, Y., Liu, H., Liang, Y., Liu, X., Hu, J., Meng, D., and Yin, H. (2017). An integrated insight into the relationship between soil microbial community and tobacco bacterial wilt disease. Frontiers in Microbiology, 8, 2179. DOI:10.3389/fmicb.2017.02179.10.3389/fmicb.2017.02179568190529163453
  44. Ye, G., Banerjee, S., He, J.-Z., Fan, J., Wang, Z., Wei, X., Hu, H., Zheng, Y., Duan, C., Wan, S., Chen, J., and Yongxin, L. (2021). Manure application increases microbiome complexity in soil aggregate fractions: Results of an 18-year field experiment. Agriculture Ecosystems & Environment, 307, 107249. DOI:10.1016/j.agee.2020.107249.10.1016/j.agee.2020.107249
  45. Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glöckner, F.O. (2014). The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Research, 42(D1), D643 ‒ 648. DOI:10.1093/nar/gkt1209.10.1093/nar/gkt1209396511224293649
  46. Zhang, S., Sun, L., Wang, Y., Fan, K., Xu, Q., Li, Y., Ma, Q., Wang, J., Ren, W., and Ding, Z. (2020a). Cow manure application effectively regulates the soil bacterial community in tea plantation. BMC Microbiology, 20(1), 190. DOI:10.1186/s12866-020-01871-y.10.1186/s12866-020-01871-y732941532611380
  47. Zhang, X., Zhang, Q., Liang, B., and Li, J. (2017). Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Applied Soil Ecology, 121, 82 ‒ 89. DOI:10.1016/j.apsoil.2017.08.016.10.1016/j.apsoil.2017.08.016
  48. Zhang, Y.J., Hu, H.W., Chen, Q.L., Singh, B.K., Yan, H., Chen, D., and He, J.Z. (2019). Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environment International, 130, 104912. DOI:10.1016/j.envint.2019.104912.10.1016/j.envint.2019.10491231220751
  49. Zhang, Y.J., Hu, H.W., Chen, Q.L., Yan, H., Wang, J.T., Chen, D., and He, J.Z. (2020b). Manure application did not enrich antibiotic resistance genes in root endophytic bacterial microbiota of cherry radish plants. Applied and Environmental Microbiology, 86(2). DOI:10.1128/AEM.02106-19.10.1128/AEM.02106-19695222331704674
  50. Zhen, Z., Liu, H., Wang, N., Guo, L., Meng, J., Ding, N., Wu, G., and Jiang, G. (2014). Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLOS ONE, 9(10), e108555. DOI:10.1371/journal.pone.0108555.10.1371/journal.pone.0108555419376625302996
  51. Zhong, X.-Z., Ma, S.-C., Wang, S.-P., Wang, T.-T., Sun, Z.-Y., Tang, Y.-Q., Deng, Y., and Kida, K. (2018). A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics. Bioresource Technology, 247, 443 ‒ 452. DOI:10.1016/j.biortech.2017.09.10.1016/j.biortech.2017.09.116
DOI: https://doi.org/10.2478/agri-2021-0013 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 144 - 154
Submitted on: Apr 20, 2021
|
Accepted on: Aug 31, 2021
|
Published on: Nov 3, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2021 Hafeez Ul Haq, Ye Li, Lingyue Jin, Ting Zhang, Linjie Cheng, Zhe Li, Baoyu Tian, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.