Have a personal or library account? Click to login
Possibilities of Determination of Risk Elements in Alluvial Agriculture Soils in the Mže and Otava River Basins by X-Ray Fluorescence Spectrometry Cover

Possibilities of Determination of Risk Elements in Alluvial Agriculture Soils in the Mže and Otava River Basins by X-Ray Fluorescence Spectrometry

Open Access
|May 2020

References

  1. ADLER, K. – PIIKKI, K. – SÖDERSTRÖM, M. – ERIKSSON, J. – ALSHIHABI, O. 2020. Predictions of Cu, Zn, and Cd concentrations in soil using portable X-Ray fluorescence measurements. in Sensors, vol. 20, no. 2, pp. 474. DOI: 10.3390/s20020474.10.3390/s20020474
  2. ALI, H. – KHAN, E. – ILAHI, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. In Journal of Chemistry, Article ID 6730305, 14 p. DOI: 10.1155/2019/6730305.10.1155/2019/6730305
  3. ALLOWAY, B.J. 2013. Sources of heavy metals and metalloids in soils. In ALLOWAY, B.J. (Ed.) Heavy Metals in Soils. Dordrecht : Environmen. Springer, pp. 11 –50.
  4. BETTINELLI, M. – BEONE, G.M. – SPEZIA, S. – BAFFI, C. 2000. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spektrometry analysis. In Analytica Chimica Acta, vol. 424, pp. 89–296. DOI: 10.1016/S0003-2670(00)01123-5.10.1016/S0003-2670(00)01123-5
  5. BONELLI, M.G. – FERRINI, M. – MANNI, A. 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. in Chemosphere, vol. 186, pp. 124 –131. doi: 10.1016/j.chemosphere.2017.07.11610.1016/j.chemosphere.2017.07.11628772179
  6. DING, L. – WANG, S. – CAI, B. et al. 2018. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis. In IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 032031. DOI: 10.1088/1755-1315/121/3/032031.10.1088/1755-1315/121/3/032031
  7. FRAHM, E. – MONNIER, G.F. – JELINSKI, N.A. – FLEMING, E.P. – BARBER, B.L. – LAMBON, J.B. 2016. Chemical soil surveys at the Bremer Site (Dakota county, Minnesota, USA): Measuring phosphorus content of sediment by portable XRF and ICP-OES. In Journal of Archeological Science, vol. 75, pp. 115 –138. DOI: 10.1016/j.jas.2016.10.004.10.1016/j.jas.2016.10.004
  8. HAVUKAINEN, J. – HILTUNEN, J. – PURO, L. – HORTTANAINEN, M. 2019. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples. In Waste Management, vol. 83, pp. 6–13. DOI:10.1016/j.wasman.2018.10.039.10.1016/j.wasman.2018.10.03930514472
  9. HORTA, A. – MALONE, B. – STOCKMANN, U. et al. 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. In Geoderma, vol. 241–242, pp. 180–209. DOI: 10.1016/j.geoderma.2014.11.024.10.1016/j.geoderma.2014.11.024
  10. HU, B. – CHEN, S. – HU, J. et al. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. In PLoS ONE, vol. 12, pp. 1–13. DOI: 10.1371/journal.pone.0172438.10.1371/journal.pone.0172438532527828234944
  11. HU, W. – HUANG, B. – WEINDORF, D.C. – CHEN, Y. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. In Bulletin of Environmental Contamination and Toxicology, vol. 92, pp. 420–426. DOI:10.1007/s00128-014-1236-3.10.1007/s00128-014-1236-324585255
  12. JENKINS, R. 1999. X-Ray Fluorescence Spectrometry, 2nd Edition. Weinheim : Wiley-VCH, 232 p.10.1002/9781118521014
  13. KIM, S.M. – CHOI, Y. 2017. Assessing statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF data. In International Journal of Environmental Research and Public Health, vol. 14, pp. 654. DOI: 10.3390/ijerph14060654.10.3390/ijerph14060654548634028629168
  14. KODOM, K. – PREKO, K. – BOAMAH, D. 2012. X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. In soil and Sediment Contamination, vol. 21, pp. 1006–1021. DOI: 10.1080/15320383.2012.712073.10.1080/15320383.2012.712073
  15. LILLI, M.A. – MORAETIS, D. – NIKOLAIDIS, N.P. et al. 2015. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. In Journal of Hazardous Materials, vol. 281, pp. 12–19. DOI: 10.1016/j.jhazmat.2014.07.037.10.1016/j.jhazmat.2014.07.03725103879
  16. LOKESHWARI, H. – CHANDRAPPA, G.T. 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. In Current Science, vol. 91, pp. 622–627.
  17. MALIKI, A.A. – AL-LAMI, A.K. – HUSSAIN, H.M. – ALANSARI, N. 2017. Comparison betle inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. In Environmental Earth Sciences, vol. 76, pp. 433. DOI: 10.1007/s12665-017-6753-z.10.1007/s12665-017-6753-z
  18. MCCOMB, J.Q. – ROGERS, C. – HAN, F.X. – TCHOUNWOU, P.B. 2014. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study. In Water, Air, & Soil Pollution, vol. 225, no. 2169. DOI:10.1007/s11270-014-2169-5.10.1007/s11270-014-2169-5438675325861136
  19. MCINTOSH, K. – GUIMARĀES, D. – CUSACK, M.J. – VERSHININ, A. – CHEN, Z.W. – YANG, K. – PARSONS, P.J. 2016. Evaluation of portable XRF instrumentation for assessing potential environmental exposure to toxic elements. In International Journal of Environmental Analytical Chemistry, vol. 96, pp. 15–37. DOI: 10.1080/03067319.2015.1114104.10.1080/03067319.2015.1114104797840533746339
  20. MCLAREN, T.I. – GUPPY, C.N. – TIGHE, M.K. 2012. A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. In Soil Science Society of America Journal, vol. 76, pp. 1446–1453. DOI: 10.2136/sssaj2011.0355.10.2136/sssaj2011.0355
  21. MELOUN, M. – MILITKÝ, J. 2011. Statistical data analysis, a practical guide with 1250 exercises and answer key on CD. New Delhi, India: Woodhead Publishing, 773 p.10.1533/9780857097200
  22. MENŠÍK, L. – KUNZOVÁ, E. – HLISNIKOVSKÝ, L. et al. 2019. Vývoj kalibračních rovnic pro stanovení rizikových prvků a látek v aluviálních půdách řek Mže a Otavy prostřednictvím mobilního XRF přístroje (Development of calibration equations for determination of risk elements in alluvial soils of river Mze and Otava by means of mobile XRF instrument). Praha: Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 – Ruzyně, 24 p.
  23. PAULETTE, L. – MAN, T. – WEINDORF, D.C. – PERSON, T. 2015. Rapid assessment of soil and kontaminant variability via portable x-ray fluorescence spectroscopy: Copᶊa Mică, Romania. In Geoderma, vol. 243, pp. 130–140. DOI: 10.1016/j.geoderma.2014.12.025.10.1016/j.geoderma.2014.12.025
  24. PAVELEY, C.F. – DAVIES, B.E. – JONES, K. 1988. Comparison of results obtained by x-ray fluorescence of the total soil and the atomic absorption spectrometry assay of an acid digest in the routine determination of lead and zinc in soils. In Communications in Soil Science and Plant Analysis, vol. 19, pp. 107–116. DOI: 10.1080/00103628809367923.10.1080/00103628809367923
  25. QU, M. – CHEN, J. – LI, W. – ZHANG, C. – WAN, M. – HUANG, B. – ZHAO, Y. 2019. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. In Environmental Pollution, vol. 254, 112993. DOI:10.1016/j.envpol.2019.112993.10.1016/j.envpol.2019.11299331401521
  26. RAN, J. – WANG, D. – WANG, C. – ZHANG, G. – YAO, L. 2014. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. In Environmental Science: Processes & Impacts, vol. 16, pp. 1870–1877. DOI: 10.1039/c4em00172a.10.1039/C4EM00172A
  27. ROUILLON, M. – TAYLOR, M.P. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? In Environmental Pollution, vol. 214, pp. 255–264. DOI: 10.1016/j.envpol.2016.03.055.10.1016/j.envpol.2016.03.05527100216
  28. SHUTTLEWORTH, E.L. – EVANS, M.G. – HUTCHINSON, S.M. – ROTHWELL, J.J. 2014. assessment of lead contamination in Peatlands using field portable XRF. In Water, Air, & Soil Pollution, vol. 225, 11844. DOI:10.1007/s11270-013-1844-2.10.1007/s11270-013-1844-2
  29. WAN, M. – HU, W. – QU, M. – TIAN, K. – ZHANG, H. – WANG, Y. – HUANG, B. 2019. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. In Ecological Indicators, vol. 101, pp. 583–594. DOI: 10.1016/j.ecolind.2019.01.069.10.1016/j.ecolind.2019.01.069
  30. WANG, B. – YU, J. – HUANG, B. et al. 2015. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer. In Spectroscopy and Spectral Analysis, vol. 35, pp. 735–1740. DOI: 10.3964/j.issn.1000-0593(2015)06-1735-06.
  31. WIECZOREK-DABROWSKA, M. – TOMZA-MARCINIAK, A. – PILARCZYK, B. – BALICKA-RAMISZ, A. 2013. Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. In Chemistry and Ecology, vol. 29, pp. 100–110. DOI: 10.1080/02757540.2012.711322.10.1080/02757540.2012.711322
  32. ZBÍRAL, J. – HONSA, I. – MALÝ, S. 1997. Analýza půd III. Jednotné pracovní postupy (Soil Analysis III. Unified Working Procedures). Brno : ÚKZUZ, Brno, 150 p.
DOI: https://doi.org/10.2478/agri-2020-0002 | Journal eISSN: 1338-4376 | Journal ISSN: 0551-3677
Language: English
Page range: 15 - 23
Submitted on: Nov 26, 2019
Accepted on: Mar 23, 2020
Published on: May 11, 2020
Published by: National Agricultural and Food Centre
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2020 Ladislav Menšík, Lukáš Hlisnikovský, Ladislav Holík, Pavel Nerušil, Eva Kunzová, published by National Agricultural and Food Centre
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.