References
- ADLER, K. – PIIKKI, K. – SÖDERSTRÖM, M. – ERIKSSON, J. – ALSHIHABI, O. 2020. Predictions of Cu, Zn, and Cd concentrations in soil using portable X-Ray fluorescence measurements. in Sensors, vol. 20, no. 2, pp. 474. DOI: 10.3390/s20020474.10.3390/s20020474
- ALI, H. – KHAN, E. – ILAHI, I. 2019. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. In Journal of Chemistry, Article ID 6730305, 14 p. DOI: 10.1155/2019/6730305.10.1155/2019/6730305
- ALLOWAY, B.J. 2013. Sources of heavy metals and metalloids in soils. In ALLOWAY, B.J. (Ed.) Heavy Metals in Soils. Dordrecht : Environmen. Springer, pp. 11 –50.
- BETTINELLI, M. – BEONE, G.M. – SPEZIA, S. – BAFFI, C. 2000. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spektrometry analysis. In Analytica Chimica Acta, vol. 424, pp. 89–296. DOI: 10.1016/S0003-2670(00)01123-5.10.1016/S0003-2670(00)01123-5
- BONELLI, M.G. – FERRINI, M. – MANNI, A. 2017. Artificial neural networks to evaluate organic and inorganic contamination in agricultural soils. in Chemosphere, vol. 186, pp. 124 –131. doi: 10.1016/j.chemosphere.2017.07.11610.1016/j.chemosphere.2017.07.11628772179
- DING, L. – WANG, S. – CAI, B. et al. 2018. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis. In IOP Conference Series: Earth and Environmental Science, vol. 121, pp. 032031. DOI: 10.1088/1755-1315/121/3/032031.10.1088/1755-1315/121/3/032031
- FRAHM, E. – MONNIER, G.F. – JELINSKI, N.A. – FLEMING, E.P. – BARBER, B.L. – LAMBON, J.B. 2016. Chemical soil surveys at the Bremer Site (Dakota county, Minnesota, USA): Measuring phosphorus content of sediment by portable XRF and ICP-OES. In Journal of Archeological Science, vol. 75, pp. 115 –138. DOI: 10.1016/j.jas.2016.10.004.10.1016/j.jas.2016.10.004
- HAVUKAINEN, J. – HILTUNEN, J. – PURO, L. – HORTTANAINEN, M. 2019. Applicability of a field portable X-ray fluorescence for analyzing elemental concentration of waste samples. In Waste Management, vol. 83, pp. 6–13. DOI:10.1016/j.wasman.2018.10.039.10.1016/j.wasman.2018.10.03930514472
- HORTA, A. – MALONE, B. – STOCKMANN, U. et al. 2015. Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review. In Geoderma, vol. 241–242, pp. 180–209. DOI: 10.1016/j.geoderma.2014.11.024.10.1016/j.geoderma.2014.11.024
- HU, B. – CHEN, S. – HU, J. et al. 2017. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution. In PLoS ONE, vol. 12, pp. 1–13. DOI: 10.1371/journal.pone.0172438.10.1371/journal.pone.0172438532527828234944
- HU, W. – HUANG, B. – WEINDORF, D.C. – CHEN, Y. 2014. Metals analysis of agricultural soils via portable X-ray fluorescence spectrometry. In Bulletin of Environmental Contamination and Toxicology, vol. 92, pp. 420–426. DOI:10.1007/s00128-014-1236-3.10.1007/s00128-014-1236-324585255
- JENKINS, R. 1999. X-Ray Fluorescence Spectrometry, 2nd Edition. Weinheim : Wiley-VCH, 232 p.10.1002/9781118521014
- KIM, S.M. – CHOI, Y. 2017. Assessing statistically significant heavy-metal concentrations in abandoned mine areas via hot spot analysis of portable XRF data. In International Journal of Environmental Research and Public Health, vol. 14, pp. 654. DOI: 10.3390/ijerph14060654.10.3390/ijerph14060654548634028629168
- KODOM, K. – PREKO, K. – BOAMAH, D. 2012. X-ray fluorescence (XRF) analysis of soil heavy metal pollution from an industrial area in Kumasi, Ghana. In soil and Sediment Contamination, vol. 21, pp. 1006–1021. DOI: 10.1080/15320383.2012.712073.10.1080/15320383.2012.712073
- LILLI, M.A. – MORAETIS, D. – NIKOLAIDIS, N.P. et al. 2015. Characterization and mobility of geogenic chromium in soils and river bed sediments of Asopos basin. In Journal of Hazardous Materials, vol. 281, pp. 12–19. DOI: 10.1016/j.jhazmat.2014.07.037.10.1016/j.jhazmat.2014.07.03725103879
- LOKESHWARI, H. – CHANDRAPPA, G.T. 2006. Impact of heavy metal contamination of Bellandur Lake on soil and cultivated vegetation. In Current Science, vol. 91, pp. 622–627.
- MALIKI, A.A. – AL-LAMI, A.K. – HUSSAIN, H.M. – ALANSARI, N. 2017. Comparison betle inductively coupled plasma and X-ray fluorescence performance for Pb analysis in environmental soil samples. In Environmental Earth Sciences, vol. 76, pp. 433. DOI: 10.1007/s12665-017-6753-z.10.1007/s12665-017-6753-z
- MCCOMB, J.Q. – ROGERS, C. – HAN, F.X. – TCHOUNWOU, P.B. 2014. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectrometer, A comparative study. In Water, Air, & Soil Pollution, vol. 225, no. 2169. DOI:10.1007/s11270-014-2169-5.10.1007/s11270-014-2169-5438675325861136
- MCINTOSH, K. – GUIMARĀES, D. – CUSACK, M.J. – VERSHININ, A. – CHEN, Z.W. – YANG, K. – PARSONS, P.J. 2016. Evaluation of portable XRF instrumentation for assessing potential environmental exposure to toxic elements. In International Journal of Environmental Analytical Chemistry, vol. 96, pp. 15–37. DOI: 10.1080/03067319.2015.1114104.10.1080/03067319.2015.1114104797840533746339
- MCLAREN, T.I. – GUPPY, C.N. – TIGHE, M.K. 2012. A rapid and nondestructive plant nutrient analysis using portable X-ray fluorescence. In Soil Science Society of America Journal, vol. 76, pp. 1446–1453. DOI: 10.2136/sssaj2011.0355.10.2136/sssaj2011.0355
- MELOUN, M. – MILITKÝ, J. 2011. Statistical data analysis, a practical guide with 1250 exercises and answer key on CD. New Delhi, India: Woodhead Publishing, 773 p.10.1533/9780857097200
- MENŠÍK, L. – KUNZOVÁ, E. – HLISNIKOVSKÝ, L. et al. 2019. Vývoj kalibračních rovnic pro stanovení rizikových prvků a látek v aluviálních půdách řek Mže a Otavy prostřednictvím mobilního XRF přístroje (Development of calibration equations for determination of risk elements in alluvial soils of river Mze and Otava by means of mobile XRF instrument). Praha: Výzkumný ústav rostlinné výroby, v.v.i., Praha 6 – Ruzyně, 24 p.
- PAULETTE, L. – MAN, T. – WEINDORF, D.C. – PERSON, T. 2015. Rapid assessment of soil and kontaminant variability via portable x-ray fluorescence spectroscopy: Copᶊa Mică, Romania. In Geoderma, vol. 243, pp. 130–140. DOI: 10.1016/j.geoderma.2014.12.025.10.1016/j.geoderma.2014.12.025
- PAVELEY, C.F. – DAVIES, B.E. – JONES, K. 1988. Comparison of results obtained by x-ray fluorescence of the total soil and the atomic absorption spectrometry assay of an acid digest in the routine determination of lead and zinc in soils. In Communications in Soil Science and Plant Analysis, vol. 19, pp. 107–116. DOI: 10.1080/00103628809367923.10.1080/00103628809367923
- QU, M. – CHEN, J. – LI, W. – ZHANG, C. – WAN, M. – HUANG, B. – ZHAO, Y. 2019. Correction of in-situ portable X-ray fluorescence (PXRF) data of soil heavy metal for enhancing spatial prediction. In Environmental Pollution, vol. 254, 112993. DOI:10.1016/j.envpol.2019.112993.10.1016/j.envpol.2019.11299331401521
- RAN, J. – WANG, D. – WANG, C. – ZHANG, G. – YAO, L. 2014. Using portable X-ray fluorescence spectrometry and GIS to assess environmental risk and identify sources of trace metals in soils of peri-urban areas in the Yangtze Delta region, China. In Environmental Science: Processes & Impacts, vol. 16, pp. 1870–1877. DOI: 10.1039/c4em00172a.10.1039/C4EM00172A
- ROUILLON, M. – TAYLOR, M.P. 2016. Can field portable X-ray fluorescence (pXRF) produce high quality data for application in environmental contamination research? In Environmental Pollution, vol. 214, pp. 255–264. DOI: 10.1016/j.envpol.2016.03.055.10.1016/j.envpol.2016.03.05527100216
- SHUTTLEWORTH, E.L. – EVANS, M.G. – HUTCHINSON, S.M. – ROTHWELL, J.J. 2014. assessment of lead contamination in Peatlands using field portable XRF. In Water, Air, & Soil Pollution, vol. 225, 11844. DOI:10.1007/s11270-013-1844-2.10.1007/s11270-013-1844-2
- WAN, M. – HU, W. – QU, M. – TIAN, K. – ZHANG, H. – WANG, Y. – HUANG, B. 2019. Application of arc emission spectrometry and portable X-ray fluorescence spectrometry to rapid risk assessment of heavy metals in agricultural soils. In Ecological Indicators, vol. 101, pp. 583–594. DOI: 10.1016/j.ecolind.2019.01.069.10.1016/j.ecolind.2019.01.069
- WANG, B. – YU, J. – HUANG, B. et al. 2015. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer. In Spectroscopy and Spectral Analysis, vol. 35, pp. 735–1740. DOI: 10.3964/j.issn.1000-0593(2015)06-1735-06.
- WIECZOREK-DABROWSKA, M. – TOMZA-MARCINIAK, A. – PILARCZYK, B. – BALICKA-RAMISZ, A. 2013. Roe and red deer as bioindicators of heavy metals contamination in north-western Poland. In Chemistry and Ecology, vol. 29, pp. 100–110. DOI: 10.1080/02757540.2012.711322.10.1080/02757540.2012.711322
- ZBÍRAL, J. – HONSA, I. – MALÝ, S. 1997. Analýza půd III. Jednotné pracovní postupy (Soil Analysis III. Unified Working Procedures). Brno : ÚKZUZ, Brno, 150 p.