Have a personal or library account? Click to login
The Effect of Sulphoraphane on Brain Glucose Uptake during Neonatal Hypoxic-Ischemic Encephalopathy in Newborn Rats Cover

The Effect of Sulphoraphane on Brain Glucose Uptake during Neonatal Hypoxic-Ischemic Encephalopathy in Newborn Rats

Open Access
|Nov 2021

References

  1. Allen KA. Hypoxic Ischemic Encephalopathy: Pathophysiology Experimental Treatments. 2012;11(3):125–33.
  2. Edwards AB, Anderton RS, Knuckey NW, Meloni BP. Perinatal hypoxic-ischemic encephalopathy and neuroprotective peptide therapies: A case for cationic arginine-rich peptides (CARPs). Brain Sci. 2018;8(8):15–20.
  3. Frajewicki A, Laštůvka Z, Borbélyová V, Khan S, Jandová K, Janišová K, et al. Perinatal hypoxic-ischemic damage: review of the current treatment possibilities. Physiol Res. 2021;69:S379–401.
  4. Heiss EH, Schachner D, Zimmermann K, Dirsch VM. Glucose availability is a decisive factor for Nrf2-mediated gene expression. Redox Biol. 2013;1(1):359–65.
  5. Kubo E, Chhunchha B, Singh P, Sasaki H, Singh DP. Sulforaphane reactivates cellular antioxidant defense by inducing Nrf2/ARE/Prdx6 activity during aging and oxidative stress. Sci Rep. 2017;7(1):1–17.
  6. Dang J, Brandenburg LO, Rosen C, Fragoulis A, Kipp M, Pufe T, et al. Nrf2 expression by neurons, astroglia, and microglia in the cerebral cortical penumbra of ischemic rats. J Mol Neurosci. 2012;46(3):578–84.
  7. Liu L, Locascio LM, Doré S. Critical Role of Nrf2 in Experimental Ischemic Stroke. Front Pharmacol. 2019; 10:153
  8. Vannucci RC, Vannucci SJ. Perinatal hypoxic-ischemic brain damage: Evolution of an animal model. Developmental Neuroscience. 2005.
  9. Sánchez F, Orero A, Soriano A. ALBIRA : A small animal PET / SPECT / CT imaging system. 2013;40(5):1–11.
  10. Huang BY, Castillo M. Hypoxic-Ischemic brain injury: Imaging findings from birth to adulthood. Radiographics. 2008;28(2):417–39.
  11. Danilov CA, Chandrasekaran K, Racz J, Soane L, Zielke C, Fiskum G. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia. 2009; 57(6): 645–656.
  12. Giacoppo S, Galuppo M, Montaut S, Iori R, Rollin P, Bramanti P, et al. An overview on neuroprotective effects of isothiocyanates for the treatment of neurodegenerative diseases. Fitoterapia. 2015;106:12–21.
  13. Tarozzi A, Angeloni C, Malaguti M, Morroni F, Hrelia S, Hrelia P. Sulforaphane as a potential protective phytochemical against neurodegenerative diseases. Oxid Med Cell Longev. 2013;2013: 415078.
  14. Guerrero-Beltrán CE, Calderón-Oliver M, Pedraza-Chaverri J, Chirino YI. Protective effect of sulforaphane against oxidative stress: Recent advances. Exp Toxicol Pathol. 2012;64(5):503–8.
  15. Narayanaswami V, Dahl K, Bernard-Gauthier V, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: Outlook Beyond TSPO. Mol Imaging. 2018;17:1–25.
  16. Svoboda J, Litvinec A, Kala D, Pošusta A, Vávrová L, Jiruška P, et al. Strain differences in intraluminal thread model of middle cerebral artery occlusion in rats. Physiol Res. 2019;68(1):37–48.
Language: English
Page range: 136 - 138
Submitted on: Aug 4, 2021
|
Published on: Nov 25, 2021
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2021 S. Kapoor, D. Kala, J. Svoboda, Z. Brnoliakova, J. Otahal, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.