Have a personal or library account? Click to login
Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel Cover

Tannins, novel inhibitors of the volume regulation and the volume-sensitive anion channel

Open Access
|Jan 2020

References

  1. [1] Abdulladzhanova NG, Mavlyanov SM, Dalimov DN. Phenolic Compounds of Euphorbia ferganensis B. Fedtsch. Chem Nat Compd. 2001;37:193–194.10.1023/A:1012303608602
  2. [2] Akita T, Fedorovich SV, Okada Y. Ca2+ nanodomain-mediated component of swelling-induced volume-sensitive outwardly rectifying anion current triggered by autocrine action of ATP in mouse astrocytes. Cell Physiol Biochem. 2011;28:1181–1190.10.1159/00033586722179006
  3. [3] Akita T, Okada Y. Characteristics and roles of the volume-sensitive outwardly rectifying (VSOR) anion channel in the central nervous system. Neuroscience. 2014;275:211–231.10.1016/j.neuroscience.2014.06.01524937753
  4. [4] Alibrahim A, Zhao LY, Bae CY, et al. Neuroprotective effects of volume-regulated anion channel blocker DCPIB on neonatal hypoxic-ischemic injury. Acta Pharmacol Sin. 2013;34:113–118.10.1038/aps.2012.148408649023202801
  5. [5] Arrazola A, Rota R, Hannaert P, Soler A, Garay RP. Cell volume regulation in rat thymocytes. J Physiol. 1993;465:403–414.10.1113/jphysiol.1993.sp01968311754368229842
  6. [6] Behravan E, Razavi BM, Hosseinzadeh H. Review of plants and their constituents in the therapy of cerebral ischemia. Phytother Res. 2014;28:1265–1274.10.1002/ptr.518724919707
  7. [7] Borisova MP, Kataev AA, Sivozhelezov VS. Action of tannin on cellular membranes: Novel insights from concerted studies on lipid bilayers and native cells. Biochim Biophys Acta. 2019;1861:1103–1111.10.1016/j.bbamem.2019.03.01730926363
  8. [8] Cruz-Rangel S, De Jesus-Perez JJ, Contreras-Vite JA, Perez-Cornejo P, Hartzell HC, Arreola J. Gating modes of calcium-activated chloride channels TMEM16A and TMEM16B. J Physiol. 2015;593:5283–5298.10.1113/JP271256470451326728431
  9. [9] Delpire E, Gagnon KB. Water Homeostasis and Cell Volume Maintenance and Regulation. Curr Top Membr. 2018;81:3–52.10.1016/bs.ctm.2018.08.001645747430243436
  10. [10] Deneka D, Sawicka M, Lam AKM, Paulino C, Dutzler R. Structure of a volume-regulated anion channel of the LRRC8 family. Nature. 2018;558:254–259.10.1038/s41586-018-0134-y29769723
  11. [11] Galvez J, Zarzuelo A, Crespo ME, et al. Antidiarrhoeic activity of Sclerocarya birrea bark extract and its active tannin constituent in rats. Phytother Res. 1991;5:276–278.10.1002/ptr.2650050611
  12. [12] Han Q, Liu S, Li Z, et al. DCPIB, a potent volume-regulated anion channel antagonist, attenuates microglia-mediated inflammatory response and neuronal injury following focal cerebral ischemia. Brain Res. 2014;1542:176–185.10.1016/j.brainres.2013.10.02624189520
  13. [13] Hoffmann EK, Holm NB, Lambert IH. Functions of volume-sensitive and calcium-activated chloride channels. IUBMB Life. 2014;66:257–267.10.1002/iub.126624771413
  14. [14] Islambekov YS, Mavlyanov S, Kamaev FG, Ismailov AI. Phenolic compounds of sumac. Chem Nat Compd. 1994;30:37–39.10.1007/BF00638416
  15. [15] Kasuya G, Nakane T, Yokoyama T, et al. Cryo-EM structures of the human volume-regulated anion channel LRRC8. Nat Struct Mol Biol. 2018;25:797–804.10.1038/s41594-018-0109-630127360
  16. [16] Kefauver JM, Saotome K, Dubin AE, et al. Structure of the human volume regulated anion channel. Elife. 2018;7.10.7554/eLife.38461608665730095067
  17. [17] Kurbannazarova RS, Bessonova SV, Okada Y, Sabirov RZ. Swelling-activated anion channels are essential for volume regulation of mouse thymocytes. Int J Mol Sci. 2011;12:9125–9137.10.3390/ijms12129125325712022272123
  18. [18] Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Osmotic water permeability and regulatory volume decrease of rat thymocytes. Gen Physiol Biophys. 2003;22:221–232.
  19. [19] Kurbannazarova RS, Tashmukhamedov BA, Sabirov RZ. Role of potassium and chlorine channels in the regulation of thymocyte volume in rats. Bull Exp Biol Med. 2008;145:544–547.10.1007/s10517-008-0152-019145293
  20. [20] Mavlyanov SM, Islambekov YS, Ismailov AI, Dalimov DN, Abdulladzhanova NG. Vegetable Tanning Agents. Chem Nat Compd. 2001;37:1–24.10.1023/A:1017605223089
  21. [21] Namkung W, Phuan PW, Verkman AS. TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem. 2011;286:2365–2374.10.1074/jbc.M110.175109302353021084298
  22. [22] Namkung W, Thiagarajah JR, Phuan PW, Verkman AS. Inhibition of Ca2+-activated Cl-channels by gallotannins as a possible molecular basis for health benefits of red wine and green tea. FASEB J. 2010;24:4178–4186.10.1096/fj.10-160648297442220581223
  23. [23] Okada Y. Volume expansion-sensing outward-rectifier Cl-channel: fresh start to the molecular identity and volume sensor. Am J Physiol. 1997;273:C755–789.10.1152/ajpcell.1997.273.3.C7559316396
  24. [24] Okada Y, Okada T, Islam MR, Sabirov RZ. Molecular Identities and ATP Release Activities of Two Types of Volume-Regulatory Anion Channels, VSOR and Maxi-Cl. Curr Top Membr. 2018;81:125–176.10.1016/bs.ctm.2018.07.00430243431
  25. [25] Okada Y, Okada T, Sato-Numata K, et al. Cell Volume-Activated and Volume-Correlated Anion Channels in Mammalian Cells: Their Biophysical, Molecular, and Pharmacological Properties. Pharmacol Rev. 2019;71:49–88.10.1124/pr.118.01591730573636
  26. [26] Okada Y, Sato K, Toychiev AH, et al. The Puzzles of Volume-Activated Anion Channels. In: Physiology and Pathology of Chloride Transporters and Channels in the Nervous System. San Diego: Elsevier; 2009.10.1016/B978-0-12-374373-2.00015-7
  27. [27] Okada Y, Shimizu T, Maeno E, Tanabe S, Wang X, Takahashi N. Volume-sensitive chloride channels involved in apoptotic volume decrease and cell death. J Membr Biol. 2006;209:21–29.10.1007/s00232-005-0836-616685598
  28. [27] Olchowik-Grabarek E, Mavlyanov S, Abdullajanova N, Gieniusz R, Zamaraeva M. Specificity of Hydrolysable Tannins from Rhus typhina L. to Oxidants in Cell and Cell-Free Models. Appl Biochem Biotechnol. 2017;181:495–510.10.1007/s12010-016-2226-127600811
  29. [29] Pedersen SF, Okada Y, Nilius B. Biophysics and Physiology of the Volume-Regulated Anion Channel (VRAC)/Volume-Sensitive Outwardly Rectifying Anion Channel (VSOR). Pflugers Arch. 2016;468:371–383.10.1007/s00424-015-1781-626739710
  30. [30] Qiu Z, Dubin AE, Mathur J, et al. SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell. 2014;157:447–458.10.1016/j.cell.2014.03.024402386424725410
  31. [31] Rice-Evans CA, Miller NJ, Bolwell PG, Bramley PM, Pridham JB. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free RadicRes. 1995;22:375–383.10.3109/107157695091456497633567
  32. [32] Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996;20:933–956.10.1016/0891-5849(95)02227-9
  33. [33] Sabirov RZ, Kurbannazarova RS, Melanova NR, Okada Y. Volume-sensitive anion channels mediate osmosensitive glutathione release from rat thymocytes. PLoS One. 2013;8:e55646.10.1371/journal.pone.0055646
  34. [34] Sabirov RZ, Merzlyak PG. Plasmalemmal VDAC controversies and maxi-anion channel puzzle. Biochim Biophys Acta. 2012;1818:1570–1580.10.1016/j.bbamem.2011.09.024
  35. [35] Sabirov RZ, Merzlyak PG, Islam MR, Okada T, Okada Y. The properties, functions, and pathophysiology of maxi-anion channels. Pflugers Arch. 2016;468:405–420.10.1007/s00424-015-1774-5
  36. [36] Scalbert A. Antimicrobial properties of tannins. Phytochemistry. 1991;30:3875–3883.10.1016/0031-9422(91)83426-L
  37. [37] Soler A, Rota R, Hannaert P, Cragoe EJ, Jr., Garay RP. Volume-dependent K+ and Cl- fluxes in rat thymocytes. J Physiol. 1993;465:387–401.10.1113/jphysiol.1993.sp01968211754358229841
  38. [38] Szteyn K, Schmid E, Nurbaeva MK, et al. Expression and functional significance of the Ca(2+)-activated Cl(-) channel ANO6 in dendritic cells. Cell Physiol Biochem. 2012;30:1319–1332.10.1159/00034332123159814
  39. [39] Terra X, Valls J, Vitrac X, et al. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J AgricFood Chem. 2007;55:4357–4365.10.1021/jf063318517461594
  40. [40] Voss FK, Ullrich F, Munch J, et al. Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science. 2014;344:634–638.10.1126/science.125282624790029
  41. [41] Wang L, Shen M, Guo X, et al. Volume-sensitive outwardly rectifying chloride channel blockers protect against high glucose-induced apoptosis of cardiomyocytes via autophagy activation. Sci Rep. 2017;7:44265.10.1038/srep44265535397228300155
  42. [41] Woll KH, Leibowitz MD, Neumcke B, Hille B. A high-conductance anion channel in adult amphibian skeletal muscle. Pflugers Arch. 1987;410:632–640.10.1007/BF005813242453021
  43. [43] Wong R, Abussaud A, Leung JW, et al. Blockade of the swelling-induced chloride current attenuates the mouse neonatal hypoxic-ischemic brain injury in vivo. Acta Pharmacol Sin. 2018;39:858–865.10.1038/aps.2018.1594391029595192
  44. [44] Wongsamitkul N, Sirianant L, Muanprasat C, Chatsudthipong V. A plant-derived hydrolysable tannin inhibits CFTR chloride channel: a potential treatment of diarrhea. Pharm Res. 2010;27:490–497.10.1007/s11095-009-0040-y20225391
  45. [45] Xue Y, Li H, Zhang Y, et al. Natural and synthetic flavonoids, novel blockers of the volume-regulated anion channels, inhibit endothelial cell proliferation. Pflugers Arch. 2018;470:1473–1483.10.1007/s00424-018-2170-829961148
  46. [46] Zhang Y, Zhang H, Feustel PJ, Kimelberg HK. DCPIB, a specific inhibitor of volume regulated anion channels (VRACs), reduces infarct size in MCAo and the release of glutamate in the ischemic cortical penumbra. Exp Neurol. 2008;210:514–520.10.1016/j.expneurol.2007.11.027236285118206872
  47. [46] Zhu F, Chu X, Wang H, et al. New Findings on the Effects of Tannic Acid: Inhibition of L-Type Calcium Channels, Calcium Transient and Contractility in Rat Ventricular Myocytes. Phytother Res. 2016;30:510–516.10.1002/ptr.555826762248
Language: English
Page range: 37 - 44
Submitted on: Jun 19, 2019
Accepted on: Oct 16, 2019
Published on: Jan 28, 2020
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2020 N.A. Tsiferova, O. J. Khamidova, A. U. Amonov, M. B. Rakhimova, S. I. Rustamova, R. Sh. Kurbannazaova, P. G. Merzlyak, N. G. Abdulladjanova, R. Z. Sabirov, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.