Have a personal or library account? Click to login
Impact of nitrate therapy on the expression of caveolin-1 and its phosphorylated isoform in lungs in the model of monocrotaline induced pulmonary hypertension Cover

Impact of nitrate therapy on the expression of caveolin-1 and its phosphorylated isoform in lungs in the model of monocrotaline induced pulmonary hypertension

Open Access
|Dec 2018

References

  1. [1] Archer, S. L., Weir, E. K., & Wilkins, M. R. (2010). Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation, 121(18), 2045–2066. https://doi.org/10.1161/CIRCULATIONAHA.108.84770710.1161/CIRCULATIONAHA.108.847707
  2. [2] Austin, E. D., Loyd, J. E., & Phillips, J. A. (1993). Heritable Pulmonary Arterial Hypertension. GeneReviews®. University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20301658
  3. [3] Clapp, L. H., & Gurung, R. (2015). The mechanistic basis of prostacyclin and its stable analogues in pulmonary arterial hypertension: Role of membrane versus nuclear receptors. Prostaglandins & Other Lipid Mediators, 120, 56–71. https://doi.org/10.1016/j.prostaglandins.2015.04.00710.1016/j.prostaglandins.2015.04.007
  4. [4] Fleming, I., & Busse, R. (1999). Signal transduction of eNOS activation. Cardiovascular Research, 43(3), 532–41. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1069032510.1016/S0008-6363(99)00094-2
  5. [5] Galiè, N., Humbert, M., Vachiery, J.-L., Gibbs, S., Lang, I., Torbicki, A., … Luis Zamorano, J. (2016). 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. European Heart Journal, 37(1), 67–119. https://doi.org/10.1093/eurheartj/ehv31710.1093/eurheartj/ehv31726320113
  6. [6] Haga, S., Tsuchiya, H., Hirai, T., Hamano, T., Mimori, A., & Ishizaka, Y. (2015). A novel ACE2 activator reduces monocrotaline-induced pulmonary hypertension by suppressing the JAK/STAT and TGF-β cascades with restored caveolin-1 expression. Experimental Lung Research, 41(1), 21–31. https://doi.org/10.3109/01902148.2014.95914110.3109/01902148.2014.95914125275723
  7. [7] Humbert, M., Sitbon, O., & Simonneau, G. (2004). Treatment of Pulmonary Arterial Hypertension. New England Journal of Medicine, 351(14), 1425–1436. https://doi.org/10.1056/NEJMra04029110.1056/NEJMra04029115459304
  8. [8] Chen, Z., Bakhshi, F. R., Shajahan, A. N., Sharma, T., Mao, M., Trane, A., … Minshall, R. D. (2012). Nitric oxide-dependent Src activation and resultant caveolin-1 phosphorylation promote eNOS/caveolin-1 binding and eNOS inhibition. Molecular Biology of the Cell, 23(7), 1388–1398. https://doi.org/10.1091/mbc.E11-09-081110.1091/mbc.e11-09-0811331580422323292
  9. [9] Chettimada, S., Yang, J., Moon, H., & Jin, Y. (2015). Caveolae, caveolin-1 and cavin-1: Emerging roles in pulmonary hypertension. World Journal of Respirology, 5(2), 126. https://doi.org/10.5320/wjr.v5.i2.12610.5320/wjr.v5.i2.126543809528529892
  10. [10] Klinger, J. R., & Kadowitz, P. J. (2017). The Nitric Oxide Pathway in Pulmonary Vascular Disease. The American Journal of Cardiology, 120(8), S71–S79. https://doi.org/10.1016/j.amjcard.2017.06.01210.1016/j.amjcard.2017.06.01229025573
  11. [11] Lai, Y.-C., Potoka, K. C., Champion, H. C., Mora, A. L., & Gladwin, M. T. (2014). Pulmonary arterial hypertension: the clinical syndrome. Circulation Research, 115(1), 115–30. https://doi.org/10.1161/CIRCRESAHA.115.30114610.1161/CIRCRESAHA.115.301146409668624951762
  12. [12] Lundberg, J. O., Weitzberg, E., & Gladwin, M. T. (2008). The nitrate– nitrite–nitric oxide pathway in physiology and therapeutics. Nature Reviews Drug Discovery, 7(2), 156–167. https://doi.org/10.1038/nrd246610.1038/nrd246618167491
  13. [13] Malikova, E., Galkova, K., Vavrinec, P., Vavrincova-Yaghi, D., Kmecova, Z., Krenek, P., & Klimas, J. (2016). Local and systemic renin-angiotensin system participates in cardiopulmonary-renal interactions in monocrotaline-induced pulmonary hypertension in the rat. Molecular and Cellular Biochemistry, 418(1–2), 147–57. https://doi.org/10.1007/s11010-016-2740-z10.1007/s11010-016-2740-z27344167
  14. [14] Mathew, R. (2011). Cell-specific dual role of caveolin-1 in pulmonary hypertension. Pulmonary Medicine, 2011, 573432. https://doi.org/10.1155/2011/57343210.1155/2011/573432310942221660237
  15. [15] Mathew, R. (2014). Pathogenesis of pulmonary hypertension: a case for caveolin-1 and cell membrane integrity. American Journal of Physiology-Heart and Circulatory Physiology, 306(1), H15–H25. https://doi.org/10.1152/ajpheart.00266.201310.1152/ajpheart.00266.201324163076
  16. [16] Mathew, R., Huang, J., Shah, M., Patel, K., Gewitz, M., & Sehgal, P. B. (2004). Disruption of Endothelial-Cell Caveolin-1α/Raft Scaffolding During Development of Monocrotaline-Induced Pulmonary Hypertension. Circulation, 110(11), 1499–1506. https://doi.org/10.1161/01.CIR.0000141576.39579.2310.1161/01.CIR.0000141576.39579.2315353500
  17. [17] Montani, D., Chaumais, M.-C., Guignabert, C., Günther, S., Girerd, B., Jaïs, X., … Humbert, M. (2014). Targeted therapies in pulmonary arterial hypertension. Pharmacology & Therapeutics, 141(2), 172–191. https://doi.org/10.1016/j.pharmthera.2013.10.00210.1016/j.pharmthera.2013.10.00224134901
  18. [18] Morrell, N. W. (2006). Pulmonary Hypertension Due to BMPR2 Mutation: A New Paradigm for Tissue Remodeling? Proceedings of the American Thoracic Society, 3(8), 680–686. https://doi.org/10.1513/pats.200605-118SF10.1513/pats.200605-118SF17065373
  19. [19] Patel, H. H., Zhang, S., Murray, F., Suda, R. Y. S., Head, B. P., Yokoyama, U., … Insel, P. A. (2007). Increased smooth muscle cell expression of caveolin-1 and caveolae contribute to the pathophysiology of idiopathic pulmonary arterial hypertension. The FASEB Journal, 21(11), 2970–2979. https://doi.org/10.1096/fj.07-8424com10.1096/fj.07-8424com17470567
  20. [20] Thenappan, T., & Weir, E. K. (2017). The Nitric Oxide Pathway—A Potential Target for Precision Medicine in Pulmonary Arterial Hypertension. The American Journal of Cardiology, 120(8), S69– S70. https://doi.org/10.1016/j.amjcard.2017.06.01110.1016/j.amjcard.2017.06.01129025572
  21. [21] Wertz, J. W., & Bauer, P. M. (2008). Caveolin-1 regulates BMPRII localization and signaling in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 375(4), 557–561. https://doi.org/10.1016/J.BBRC.2008.08.06610.1016/j.bbrc.2008.08.06618725205
  22. [22] Zhao, Y.-Y., Zhao, Y. D., Mirza, M. K., Huang, J. H., Potula, H.-H. S. K., Vogel, S. M., … Malik, A. B. (2009). Persistent eNOS activation secondary to caveolin-1 deficiency induces pulmonary hypertension in mice and humans through PKG nitration. The Journal of Clinical Investigation, 119(7), 2009–18. https://doi.org/10.1172/JCI3333810.1172/JCI33338270185119487814
Language: English
Page range: 4 - 7
Submitted on: Feb 28, 2018
Accepted on: May 31, 2018
Published on: Dec 7, 2018
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2018 Z. Kmecova, E. Malikova, B. Zsigmondova, M. Radik, J. Veteskova, M. Marusakova, P. Krenek, J. Klimas, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.