Have a personal or library account? Click to login
A Study of Local Anaesthetics. Part 202.
Determination of the Critical Micellar Concentration of Carbisocainium
Chloride in Water Using Spectral Methods and the Probe Pyrene Cover

A Study of Local Anaesthetics. Part 202. Determination of the Critical Micellar Concentration of Carbisocainium Chloride in Water Using Spectral Methods and the Probe Pyrene

Open Access
|Jun 2013

References

  1. [1] Aguiar J, Carpena P, Molina-Bolívar JA, Carnero Ruiz C. One the Determination of the critical micelle concentration by the pyrene 1:3 ratio method. J. Colloid Interface Sci. 2003;258:116–122. 10.1016/S0021-9797(02)00082-6
  2. [2] Anghel DF, Winnik FM, Galatanu N. Effect of the surfactant head group length on the interactions between polyethylene glycol monononylphenyl ethers and poly(acrylic acid). Colloids Surf. 1999;149:339–345. 10.1016/S0927-7757(98)00293-3
  3. [3] Barbero N, Quagliotto P, Barolo C, Artuso E, Buscaino R, Viscardi G. Characterization of monomeric and gemini cationic amphiphilic molecules by fluorescence intensity and anisotropy. Part 2. Dyes Pigments. 2009;83:396–402. 10.1016/j.dyepig.2009.06.013
  4. [4] Basu Ray G, Chakraborty I, Moulik SP. Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J. Colloid Interface Sci. 2006;294:248–254. 10.1016/j.jcis.2005.07.00616112127
  5. [5] Beneš L, Švec P, Kozlovský J, Borovanský A. Studie lokálních anestetik LXV: Bazické alkylestery kyselin o-alkoxykarbanylových s lokálne anestetickým a antiarytmickým účinkem. Čes. slov. Farm. 1978;27:167–172.
  6. [6] Bohorquez M, Koch C, Trygstad T, Pandit N. A Study of the Temperature-Dependent Micellization of Pluronic F127. J. Colloid Interface Sci. 1999;216:34–40. 10.1006/jcis.1999.627310395759
  7. [7] Fainerman VB. et al. Surfactants: Chemistry, Interfacial Properties, Applications. Amsterdam: Elsevier Science BV; 2001.
  8. [8] Kalyansundaram K, Thomas JK. Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems. J. Am. Chem. Soc. 1977;99:2039–2044.
  9. [9] Khan ZH, Khanna BN. Electronic absorption spectra of pyrene and its monopositive ion. J. Chem. Phys. 1973;59:3015.
  10. [10] Moroi Y. Micelles. Theoretical and Applied Aspects. New York, NY: Plenum Press; 1992. 10.1007/978-1-4899-0700-4
  11. [11] Paddon-Jones G, Regismond S, Kwetkat K, Zana R. Micellization of Nonionic Surfactant Dimers and of the Corresponding Surfactant Monomers in Aqueous Solution. J. Colloid Interface Sci. 2001;243:496–502. 10.1006/jcis.2001.7849
  12. [12] Tanford C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes. Second ed. New York, NY: Wiley-Interscience Publication; 1980.
  13. [13] Valeur B. Molecular Fluorescence. Principles and Applications. Weinheim: Wiley-VCH Verlag GmbH; 2001. 10.1002/3527600248
  14. [14] Vullev VI, Jiang H, Jones G. Excimer sensing. Top. Fluoresc. Spectrosc. Vol. 10. Advanced Concepts in Fluorescence Spectroscopy. Part B: Macromolecular Sensing. New York, NY: Springer Science + Business Media, Inc. 2005;211–231.10.1007/0-387-23647-3_7
Language: English
Page range: 1 - 6
Published on: Jun 27, 2013
Published by: Comenius University in Bratislava, Faculty of Pharmacy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year
Related subjects:

© 2013 J. Gališinová, F. Andriamainty, I. Malík, J. Čižmárik, J. Karlovská, L. Sichrovská, published by Comenius University in Bratislava, Faculty of Pharmacy
This work is licensed under the Creative Commons License.