Have a personal or library account? Click to login
Real-Time Dynamic Gesture Recognition: A Novel Approach for Efficient Human-Computer Interaction Cover

Real-Time Dynamic Gesture Recognition: A Novel Approach for Efficient Human-Computer Interaction

Open Access
|Sep 2025

References

  1. HISSAH, S. A. M. A. et al.: Detection of hand gestures with human computer recognition by using support vector machine, Periodicals of Engineering and Natural Sciences (PEN) 10, No. 2 (2022) 48–57 https://doi.org/10.21533/pen.v10i2.2866
  2. BEDDIAR, D. R. and NINI, B. and SABOKROU, M. and HADID, A.: Vision-based human activity recognition: a survey, Multimedia Tools and Applications 79, No. 41 (2020) 30509–30555 https://doi.org/10.1007/s11042-020-09004-3
  3. WANG, H. et al.: A systematic literature review of computer vision applications in robotized wire harness assembly, Advanced Engineering Informatics 59, No. (2024) 102596 https://doi.org/10.1016/j.aei.2024.102596
  4. PEREIRA, R. et al.: Systematic Review of Emotion Detection with Computer Vision and Deep Learning, Sensors 24, No. 11 (2024) 3484 https://doi.org/10.3390/s24113484
  5. LIU, L. et al.: Hand Gesture Recognition: A Review, IEEE Transactions on Human-Machine Systems 49, No. 4 (2019) 345–357 https://doi.org/10.1109/THMS.2019.2901659
  6. TIGRINI, A. et al.: Intelligent HumanâC“Computer Interaction: Combined Wrist and Forearm Myoelectric Signals for Handwriting Recognition, Bioengineering 11, No. 5 (2024) 458 https://doi.org/10.3390/bioengineering11050458
  7. AKDAG, A. and BAYKAN,Ă–. K.: Multi-Stream Isolated Sign Language Recognition Based on Finger Features Derived from Pose Data, Electronics 13, No. 8 (2024) 1591 https://doi.org/10.3390/electronics13081591
  8. YU, C. and GUAN, S.: Dynamic Gesture Tracking Recognition Based on TLD and DTW, Computer Systems Application 24, No. 10 (2015) 2–4
  9. ZHANG, J. and WANG, H. and LIU, Y. and JIANG, T. and WU, C.: Application of SVD and SVM Superposition Algorithm in Image Recognition of Glass Thermometer, Electronic Measurement Technology 38, No. 1 (2015) 1–3
  10. ZHANG, Y. et al.: 3D Hand Gesture Recognition Using a Convolutional Neural Network, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), No. (2017) 3111–3119 https://doi.org/10.1109/ICCVW.2017.369
  11. MITRA, S. and ACHARYA, T.: Gesture Recognition: A Survey, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 37, No. 3 (2007) 311–324 https://doi.org/10.1109/TSMCC.2007.893280
  12. YANG, H. et al.: Real-Time Hand Gesture Recognition Using Finger-Earth Mover’s Distance and Convolutional Neural Networks, IEEE Transactions on Industrial Informatics 15, No. 4 (2019) 1770–1779 https://doi.org/10.1109/TII.2018.2841423
  13. CHEN, Y. et al.: A Survey on Hand Gesture Recognition, IEEE Transactions on Systems, Man, and Cybernetics: Systems 48, No. 5 (2018) 744–758 https://doi.org/10.1109/TSMC.2018.2865940
  14. ESCALERA, S. et al.: Challenges in Multi-modal Gesture Recognition, Journal of Machine Learning Research 17, No. 48 (2016) 1–54
  15. WANG, M. and DU, Y. and ZHANG, Z.: Research on UAV-assisted inspection and image recognition of insulator defects, Journal of Electronic Measurement and Instrumentation 29, No. 12 (2015) 2–3
  16. DESHPANDE, J. S. P.: Hand Gesture Identification Using Deep Learning and Artificial Neural Networks: A Review, Lecture Notes in Electrical Engineering 825, No. (2023) 547–560 https://doi.org/10.1007/978-981-19-1754-2_40
  17. BANDINI, A. and ZARIFFA, J.: Analysis of the Hands in Egocentric Vision: A Survey, IEEE Transactions on Pattern Analysis and Machine Intelligence 42, No. 10 (2020) 2530–2542 https://doi.org/10.1109/TPAMI.2019.2938134
  18. CHUNG, Y.-L. and CHUNG, H.-Y. and TSAI, W.-F.: Hand gesture recognition via image processing techniques and deep CNN, Journal of Intelligent & Fuzzy Systems 39, No. 2 (2020) 1719–1733 https://doi.org/10.3233/JIFS-179939
  19. XU, J. and LI, J. and ZHANG, S. and XIE, C. and DONG, J.: Skeleton guided conflict-free hand gesture recognition for robot control, 2020 International Conference on Advanced Robotics and Intelligent Systems (ARIS), No. (2020) 275–282 https://doi.org/10.1109/ARIS50974.2020.9205999
  20. HAN, M. and ZANDIGOHAR, M. and KIM, M.: Classifications of dynamic EMG in hand gesture and unsupervised grasp motion segmentation, 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), No. (2021) 553–558 https://doi.org/10.1109/EMBC46164.2021.9630232
  21. ZHOU, Q. and XIE, G. and ZHANG, J. and WEI, Y.: Dynamic Hand Gesture Recognition with Adaptive HMM Based on Multi-feature Fusion, Journal of Computer Applications 38, No. 5 (2018) 1432–1438
  22. LUPINETTI, K. et al.: 3D Dynamic Hand Gestures Recognition Using the Leap Motion Sensor and Convolutional Neural Networks, Lecture Notes in Computer Science 12287, No. (2020) 464–471 https://doi.org/10.1007/978-3-030-58465-8_31
  23. ALNAIM, N. et al.: Recognition of Holoscopic 3D Video Hand Gesture Using Convolutional Neural Networks, Technologies 8, No. 2 (2020) 19 https://doi.org/10.3390/technologies8020019
  24. RIZWAN, M. et al.: Appearance Based Dynamic Hand Gesture Recognition Using 3D Separable Convolutional Neural Network, Computers, Materials & Continua 75, No. 1 (2023) 1–20 https://doi.org/10.32604/cmc.2023.038211
  25. GONZALEZ, R. C. Digital Image Processing. Pearson Education India, 2009.
  26. DE SMEDT, Q.; WANNOUS, H.; VANDEBORRE, J. P.; GUERRY, J.; LE SAUX, B.; FILLIAT, D. SHREC’16 track: 3D hand gesture recognition using a depth and skeletal dataset. In: Proceedings of the 9th Eurographics Workshop on 3D Object Retrieval. Eurographics Association, 2016. p. 85–93.
DOI: https://doi.org/10.2478/aei-2025-0012 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 25 - 33
Submitted on: Sep 23, 2024
Accepted on: Aug 12, 2025
Published on: Sep 8, 2025
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Mohammed Moyed Ahmed, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.