References
- MA, Y. – WANG, Z. – YANG, H. – YANG, L.: Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 2020, pp. 315–329
- YAN, G. – LIU, K. – LIU, C. – ZHANG, J.: Edge intelligence for internet of vehicles: A survey. IEEE Transactions on Consumer Electronics, 2024
- PAREKH, D. – PODDAR, N. – RAJPURKAR, A. – CHAHAL, M. – KUMAR, N. – JOSHI, G. P. – CHO, W.: A review on autonomous vehicles: Progress, methods and challenges. Electronics, 11(14), 2022, pp. 2162
- HUNG, N. – REGO, F. – QUINTAS, J. – CRUZ, J. – JACINTO, M. – SOUTO, D., et al.: A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments. Journal of Field Robotics, 40(3), 2023, pp. 747–779
- REN, C. – ZHANG, G. – GU, X. – LI, Y.: Computing offloading in vehicular edge computing networks: Full or partial offloading?. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Vol. 6, 2022, pp. 693–698. IEEE
- CHOI, H. – LEE, B. H. – CHUN, S. Y. – LEE, J.: Towards accelerating model parallelism in distributed deep learning systems. Plos one, 18(11), 2023, pp. e0293338
- KANG, Y. – HAUSWALD, J. – GAO, C. – ROVINSKI, A. – MUDGE, T. – MARS, J. – TANG, L.: Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1), 2017, pp. 615–629
- RAUCH, R. – BECVAR, Z. – MACH, P. – GAZDA, J.: Cooperative Multi-Agent Deep Reinforcement Learning for Dynamic Task Execution and Resource Allocation in Vehicular Edge Computing. IEEE Transactions on Vehicular Technology, 2024
- YOU, C. – LU, J. – FILEV, D.– TSIOTRAS, P.: Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning. Robotics and Autonomous Systems, 114, 2019, pp. 1–18
- MATSUBARA, Y. – YANG, R. – LEVORATO, M.– MANDT, S.: SC2 benchmark: Supervised compression for split computing. arXiv preprint arXiv:2203.08875, 2022
- GUERRERO-BALAGUERA, J. D. – CONDIA, J. E. R. – LEVORATO, M. – REORDA, M. S.: Evaluating the Reliability of Supervised Compression for Split Computing. In: 2024 IEEE 42nd VLSI Test Symposium (VTS), 2024, pp. 1–6. IEEE
- MATSUBARA, Y. – CALLEGARO, D. – SINGH, S. – LEVORATO, M. – RESTUCCIA, F.: Bottlefit: Learning compressed representations in deep neural networks for effective and efficient split computing. In: 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp. 337–346. IEEE
- MATSUBARA, Y. – LEVORATO, M. – RESTUCCIA, F.: Split computing and early exiting for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5), 2022, pp. 1–30
- ATOUI, H. – SENAME, O. – MILANÉS, V. – MARTINEZ, J. J.: Intelligent control switching for autonomous vehicles based on reinforcement learning. In: 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 792–797. IEEE
- ZHAO, Z. – WANG, K. – LING, N. – XING, G.: EdgeML: An AutoML framework for real-time deep learning on the edge. In: Proceedings of the International Conference on Internet-of-Things Design and Implementation, 2021, pp. 133–144.
- 3GPP: NR; Physical channels and modulation. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, Vol. 9, 2018
- DE SOUZA, A. B. – REGO, P. A. L. – CARNEIRO, T. – ROCHA, P. H. G. – DE SOUZA, J. N.: A context-oriented framework for computation offloading in vehicular edge computing using WAVE and 5G networks. Vehicular Communications, 32, 2021, pp. 100389. Elsevier
- ALSHAMI, M., et al.: Evaluation of path loss models at WiMAX cell-edge. In: 2011 4th IFIP International Conference on New Technologies, Mobility and Security, 2011. IEEE.
- LIU, G., et al.: Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. In: IEEE Access, vol. 7, 2019, pp. 114487–114495.
- LI, M. – SI, P. – ZHANG, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. In: IEEE Transactions on Vehicular Technology, vol. 67, no. 10, 2018, pp. 9073–9086.
- LEURENT, E.: An Environment for Autonomous Driving Decision-Making. GitHub repository, 2018 https://github.com/eleurent/highway-env
- DU, J. – SU, S. – FAN, R. – CHEN, Q.: Bird’s eye view perception for autonomous driving. In: Autonomous Driving Perception: Fundamentals and Applications. Springer, 2023, pp. 323–356
