Have a personal or library account? Click to login
Distributed Deep Reinforcement Learning Via Split Computing For Connected Autonomous Vehicles Cover

Distributed Deep Reinforcement Learning Via Split Computing For Connected Autonomous Vehicles

By: Robert Rauch and  Juraj Gazda  
Open Access
|Jun 2025

References

  1. MA, Y. – WANG, Z. – YANG, H. – YANG, L.: Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA Journal of Automatica Sinica, 7(2), 2020, pp. 315–329
  2. YAN, G. – LIU, K. – LIU, C. – ZHANG, J.: Edge intelligence for internet of vehicles: A survey. IEEE Transactions on Consumer Electronics, 2024
  3. PAREKH, D. – PODDAR, N. – RAJPURKAR, A. – CHAHAL, M. – KUMAR, N. – JOSHI, G. P. – CHO, W.: A review on autonomous vehicles: Progress, methods and challenges. Electronics, 11(14), 2022, pp. 2162
  4. HUNG, N. – REGO, F. – QUINTAS, J. – CRUZ, J. – JACINTO, M. – SOUTO, D., et al.: A review of path following control strategies for autonomous robotic vehicles: Theory, simulations, and experiments. Journal of Field Robotics, 40(3), 2023, pp. 747–779
  5. REN, C. – ZHANG, G. – GU, X. – LI, Y.: Computing offloading in vehicular edge computing networks: Full or partial offloading?. In: 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), Vol. 6, 2022, pp. 693–698. IEEE
  6. CHOI, H. – LEE, B. H. – CHUN, S. Y. – LEE, J.: Towards accelerating model parallelism in distributed deep learning systems. Plos one, 18(11), 2023, pp. e0293338
  7. KANG, Y. – HAUSWALD, J. – GAO, C. – ROVINSKI, A. – MUDGE, T. – MARS, J. – TANG, L.: Neurosurgeon: Collaborative intelligence between the cloud and mobile edge. ACM SIGARCH Computer Architecture News, 45(1), 2017, pp. 615–629
  8. RAUCH, R. – BECVAR, Z. – MACH, P. – GAZDA, J.: Cooperative Multi-Agent Deep Reinforcement Learning for Dynamic Task Execution and Resource Allocation in Vehicular Edge Computing. IEEE Transactions on Vehicular Technology, 2024
  9. YOU, C. – LU, J. – FILEV, D.– TSIOTRAS, P.: Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning. Robotics and Autonomous Systems, 114, 2019, pp. 1–18
  10. MATSUBARA, Y. – YANG, R. – LEVORATO, M.– MANDT, S.: SC2 benchmark: Supervised compression for split computing. arXiv preprint arXiv:2203.08875, 2022
  11. GUERRERO-BALAGUERA, J. D. – CONDIA, J. E. R. – LEVORATO, M. – REORDA, M. S.: Evaluating the Reliability of Supervised Compression for Split Computing. In: 2024 IEEE 42nd VLSI Test Symposium (VTS), 2024, pp. 1–6. IEEE
  12. MATSUBARA, Y. – CALLEGARO, D. – SINGH, S. – LEVORATO, M. – RESTUCCIA, F.: Bottlefit: Learning compressed representations in deep neural networks for effective and efficient split computing. In: 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2022, pp. 337–346. IEEE
  13. MATSUBARA, Y. – LEVORATO, M. – RESTUCCIA, F.: Split computing and early exiting for deep learning applications: Survey and research challenges. ACM Computing Surveys, 55(5), 2022, pp. 1–30
  14. ATOUI, H. – SENAME, O. – MILANÉS, V. – MARTINEZ, J. J.: Intelligent control switching for autonomous vehicles based on reinforcement learning. In: 2022 IEEE Intelligent Vehicles Symposium (IV), 2022, pp. 792–797. IEEE
  15. ZHAO, Z. – WANG, K. – LING, N. – XING, G.: EdgeML: An AutoML framework for real-time deep learning on the edge. In: Proceedings of the International Conference on Internet-of-Things Design and Implementation, 2021, pp. 133–144.
  16. 3GPP: NR; Physical channels and modulation. 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, Vol. 9, 2018
  17. DE SOUZA, A. B. – REGO, P. A. L. – CARNEIRO, T. – ROCHA, P. H. G. – DE SOUZA, J. N.: A context-oriented framework for computation offloading in vehicular edge computing using WAVE and 5G networks. Vehicular Communications, 32, 2021, pp. 100389. Elsevier
  18. ALSHAMI, M., et al.: Evaluation of path loss models at WiMAX cell-edge. In: 2011 4th IFIP International Conference on New Technologies, Mobility and Security, 2011. IEEE.
  19. LIU, G., et al.: Deep learning-based channel prediction for edge computing networks toward intelligent connected vehicles. In: IEEE Access, vol. 7, 2019, pp. 114487–114495.
  20. LI, M. – SI, P. – ZHANG, Y.: Delay-tolerant data traffic to software-defined vehicular networks with mobile edge computing in smart city. In: IEEE Transactions on Vehicular Technology, vol. 67, no. 10, 2018, pp. 9073–9086.
  21. LEURENT, E.: An Environment for Autonomous Driving Decision-Making. GitHub repository, 2018 https://github.com/eleurent/highway-env
  22. DU, J. – SU, S. – FAN, R. – CHEN, Q.: Bird’s eye view perception for autonomous driving. In: Autonomous Driving Perception: Fundamentals and Applications. Springer, 2023, pp. 323–356
DOI: https://doi.org/10.2478/aei-2025-0008 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 21 - 29
Submitted on: Apr 8, 2025
Accepted on: May 19, 2025
Published on: Jun 4, 2025
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Robert Rauch, Juraj Gazda, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.