Have a personal or library account? Click to login
Some Aspects of Using Polymer Materials in Electrical Engineering Cover

Some Aspects of Using Polymer Materials in Electrical Engineering

Open Access
|Nov 2024

References

  1. CAO, Y. – UHRICH, K. E.: Biodegradable and biocompatible applications: A review, Journal of Bioactive and Compatible Polymers, vol. 34, no. 1, pp. 3-15, Jan. 2019.
  2. BULLINGER, H.-J.: Technology Guide, Principles-Application-Trends: Polymer electronics, 1st ed. Springer, 2009, pp. 24-29 and 84-87.
  3. ZHU, J. –WEN, H. – ZHANG, H. – HUAG, P. –LIU, L. – HU, H.: Recent advances in biodegradable electronics- from fundamental to the next-generation multi-functional, medical and environmental device, Sustainable Materials and Technologies, vol. 35, pp. e00530, Dec. 2022.
  4. KASPRZAK, D. – MAYORGA-MARTINEZ, C. C. – PUMERA, M.: Sustainable and Flexible Energy Storage Devices: A Review, Energy Fuels, vol. 37, no. 1, pp. 74-97, Dec. 2022.
  5. LIU, H. – HAISHUN, D. – ZHENG, T. – LIU, K. – YU, T. – CHUANLING, S.: Cellulose based composite foams and aerogels for advanced energy storage devices, Chemical Engineering Journal, vol. 426, pp. 130817, Dec. 2021.
  6. BALINT, R. – CASSIDY, N. J. – CARTMELL, S. H.: Conductive polymers: Towards a smart biomaterial for tissue engineering, Acta Biometarialia, vol. 10, no. 6, pp. 2341-2353, Jun. 2014.
  7. ALMAADEED, M. A. A. – PONNAMMA, D. – CARIGNANO, M. A.: Polymer Science and Innovative Applications: Polymers in electronics, 1st ed. Elsevier, 2020, pp. 365-392.
  8. HIRAI, N. – ISHIKAWA, H. – OHKI, Y.: Electrical Conduction Properties of Several Biodegradable Polymers, 2007 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, pp. 592-595, Feb. 2008.
  9. EBEWELE, R. O.: Polymer Science and Technology, 1st ed. CRC Press, 2000, pp. 544.
  10. MEISSNER, B. – ZIVLAR, V.: Fyzika polymerü: Struktura a vlastnosti polymerních materiálů, 1st ed. Praha: SNTL - Nakladatelství technické literatury, 1987, pp. 254-270.
  11. TEIXEIRA, S. C., et al.: Review and Perspectives of sustainable, biodegradable, eco-friendly and flexible electronic devices and (Bio-sensors, Biosensors and Bioelectronics: X, vol. 14, pp. 100371, Sep. 2023.
  12. MISHRA, A. K.: Conducting Polymers: Concepts and Applications, Journal of Atomic, Molecular, Condensate & Nano Physics, vol. 5, no. 2, pp. 159-193, Mar. 2018.
  13. ZARE, N. – MAKVANDI, P.: Electrically Conducting Polymers and Their Composites for Tissue Engineering: Introduction to Conducting Polymers, 1st ed. ASC Publications, 2023, pp. 1-7.
  14. ALI, G. A. M. – MAKHLOUF, A. S. H.: Handbook of Biodegradable Materials: Polymer Biodegradation: Electrically Conducting Smart Biodegradable Polymers and Their Applications, 1st ed, Springer, 2023, pp. 1-24.
  15. PENG, X. – DONG, K. – WANG, J. – WANG, Z. L.: A review on emerging biodegradable polymers for environmentally benign transient electronics skins, Journal of Materials Science, vol. 56, no. 7-8, pp. 16765-16789, Jul. 2021.
  16. KUZNETSOVA, L. S., et al.: Conductive Polymers and Their Nanocomposites: Application Features in Biosensors and Biofuel Cells, Polymers, vol. 15, no. 18, pp. 3783, Sep. 2023.
  17. KUMAR, R. – SINGH, S. – YADAV, B. C.: Conducting Polymers: Synthesis, Properties and Applications, International Advanced Research Journal in Science, Engineering and Technology, vol. 2, no. 11, pp. 110-124, Nov. 2015.
  18. ISAACS, A.: A Dictionary of Physics, 3rd ed. New York: Oxford University Press, 1996, pp. 474.
  19. LIPTÁKOVÁ, T. – ALEXY, P. – GONDÁR, E. – KHUNOVÁ, V.: Polymérne konštrukčné materiály, 1st ed. Žilina: EDIS – vydavateľstvo Žilinskej university v Žiline, 2012, pp.189.
  20. CHAJDA, R.: Matematické, fyzikálne a chemické tabuľky pre stredné školy, 1st ed. Praha: Ottovo nakladatelství, 2013, pp. 208.
  21. MENCZEL, J. D. – PRIME, R. B.: Thermal Analysis of Polymers: Fundamentals and Applications: Dielectric analysis (DEA), 1st.ed. John Wiley & Sons, Inc., 2009, pp. 497-613.
  22. WANG, Y. – FENG, W.: Conductive Polymers and Their Composites: Introductions of Conductive Polymers, 1st ed. Springer, 2022, pp. 1-32.
  23. KRUŽELÁK, J. – KVASNIČKOVÁ, A. – JESZEOVÁ, K. – HUDEC, I.: Progress in polymer and polymer composites used as efficient materials for EMI shielding, Nanoscale Advances, vol. 3, pp. 123-172, Jan. 2021.
  24. MIYAMOTO, T. – SHIBAYAMA, K.: Electrical Conduction in Glass Transition Region of Polymer, Polymer Journal, vol. 6, no. 1, pp. 79-81, Mar. 1974.
  25. TABELLOUT, M. – FATYEYEVA, K. – BAILLIF, P.-Y. – BAEDEAU, J.-F. – PUD, A. A.: The influence of the polymer matrix on the dielectric and electrical properties of conductive polymer composites based on polyaniline, Journal of Non-Crystalline Solids, vol. 351, no. 33-36, pp. 2835-2841, Sep. 2005.
  26. LI, L. – HAN, L. – HU, H. – ZHANG, R.: A review on polymers and their composites for flexible electronics, Material Advances, vol. 4, no. 3, pp. 726-746, Dec. 2022.
  27. GIORCELLI, M. – BARTOLI, M.: Development of Coffee Biochar Filler for the Production of Electrical Conductive Reinforced Plastic, Polymers, vol. 11, no. 12, pp. 1916, Nov. 2019.
  28. DE PAOLI, M.-A. – GAZOTTI, W. A.: Conductive Polymer Blends: Preparation, Properties and Applications, Macromolecular Symposia, vol. 189, no. 1, pp. 83-104, Dec. 2002.
  29. LI, Z. – et al.: Ionic Conduction in Polymer-Based Solid Electrolytes, Advanced Science, vol. 10, no. 10, pp. 2201718, Apr. 2023.
  30. HAQUE, S. K. M. – et al.: Applications and Suitability of Polymeric Materials as Insulators in Electrical Equipment, Energies, vol. 14, no. 10, pp. 2758, May. 2021.
  31. REIS, R. L. – ROMAN, J. S.: Biodegradable Systems in Tissue Engineering and Regenerative Medicine: Understanding the Enzymatic Degradation of Biodegradable Polymers and Strategies to Control Their Degradation Rate, 1st ed. Bosa Roca, 2004, pp 177-202.
  32. ZHAI, Z. – DU, X. – LONG, Y. – ZHENG, H.: Biodegradable polymeric materials for flexible and degradable electronics, Frontiers in Electronics, vol. 3, pp. 20, Sep. 2022.
  33. SAPAROVÁ, S., et al.: Effects of glycerol content on structure and molecular motion in thermoplastic starch-based nanocomposites during storage, International Journal of Biological Macromolecules, vol. 253, no. 4, pp. 126911, Dec. 2023.
  34. BARAN, A., et al.: Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR, Journal of Polymer Research, vol. 29, pp. 257, Jun. 2022.
  35. FRIČOVÁ, O. – HUTNÍKOVÁ, M. – KOVAĽAKOVÁ, M. – BARAN, A.: Influence of aging on molecular motion in PBAT-thermoplastic starch blends studied using solid-state NMR, International Journal of Polymer Analysis and Characterization, vol. 25, no. 4, pp. 275-282, Jun. 2020.
  36. KOVAĽAKOVÁ, M., et al.: Morphology and molecular mobility of plasticized polylactic acid studied using solid-state 13C- and 1H-NMR spectroscopy, vol. 133, no. 23, pp. 43517, Mar. 2016.
  37. CUI, C. – FU, Q. – HAO, S. – DAI, R. – YANG, J.: Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance, ACS Applied Bio Materials, vol. 4, no. 1, pp. 85-121, Aug. 2020.
  38. TIAN, X., et al.: Synthesis of micro- and meso-porous carbon derived from cellulose as an electrode material for supercapacitors, Electrochimica Acta, vol. 241, pp. 170-178, Jul. 2017.
  39. DUTTA, S. – et al.: 3D network of cellulose-based energy storage devices and related emerging applications, Materials Horizons, vol 4, no.4, pp. 522-545, Feb. 2017.
  40. SUN, Z. – et al.: Overview of cellulose-based flexible materials for supercapacitors, Journal of Materials Chemistry A, vol. 9, no. 12, pp. 7278-7300, Jan. 2021.
  41. PAN, P. – et al.: Temperature-Variable FTIR and Solid-State 13C NMR Investigations on Crystalline Structure and Molecular Dynamics of Polymorphic Poly(L-lactide) and Poly(L-lactide)/Poly(D-lactide) Stereocomplex, Macromolecules, vol. 45, no. 1, pp. 189-197, Dec. 2011.
  42. XIANG, H. – LI, Z. – LIU, H. – CHEN, T. – ZHOU, H. – HUANG, W.: Green flexible electronics based on starch, NPJ Flexible Electronics, vol. 6, no. 15, pp. 16, Mar. 2022.
  43. ZHANG, B., et al.: Facile Preparation of Starch-Based Electroconductive Films with Ionic Liquid, ACS Sustainable Chemistry & Engineering, vol. 5, no. 6, pp. 5457-5467, May. 2017.
  44. CHAUHAN, J. K. – KUMAR, M. – YADAV, M. – TIWARI, R. – SRIVASTAVA, N.: Effect of NaClO4 concentration on electrolytic behaviour of corn starch film for supercapacitor application, Ionics, vol 23, no. 10, pp. 2943-2949, May. 2017.
  45. JEONG, H. – BAEK, S. – HAN, S. – JANG, H. – KIM, S. H. – LEE, H. S.: Novel Eco-Friendly Starch Paper for Use in Flexible, Transparent, and Disposable Organic Electronics, Advanced Functional Materials, vol. 28, no. 3, pp. 1704433, Jan. 2018.
  46. SHUKUR, M. F. – KADIR, M. F. Z.: Hydrogen ion conducting starch-chitosan blend based electrolyte for application in electrochemical devices, Electrochimica Acta, vol. 158, pp. 152-165, Mar. 2015.
  47. CHATHURANGA, H. – MARRIAM, I. – THANG, Z. – MACLEOD, J. – LIU, Y. – YANG, H.: Multifunctional, Bioinspired, and Moisture Responsive Graphene Oxide/Tapioca Starch Nanocomposites, Advanced Materials Technologies, vol. 7, no. 4, pp. 2100447, Jul. 2021.
  48. WILLFAHRT, A. – STEINER, E. – HÖTZEL, J. – CRISPIN, X.: Printable acid-modified corn starch as non-toxic, disposable hydrogel-polymer electrolyte in supercapacitors, Applied Physics A, vol. 125, no. 474, pp.474, Jun. 2019.
  49. WANG, Y., et al.: Ultrafast Self-Healing, Reusable, and Conductive Polysaccharide-Based Hydrogels for Sensitive Ionic Sensors, ACS Sustainable Chemistry & Engineering, vol. 8, no. 50, pp. 18506-18518 Dec. 2020.
  50. KONG, L. – GAO, Z. – LI, X. – GAO, G.: An amylopectin-enabled skin-mounted hydrogel wearable sensor, Journal of Materials Chemistry B, vol. 9, no. 4, pp. 1082-1088, Dec. 2020.
  51. ZUO, Y. – Wang, K. – WEI, M. – ZHAO, S. – ZHANG, P. – PEI, P.: Starch gel for flexible rechargeable zinc-air batteries, Cell Reports Physical Science, vol. 3, no. 1, pp. 100687, Jan. 2022.
  52. BOUTRY, C. M., et al.: A stretchable and biodegradable strain and pressure sensor for orthopaedic application, Nature Electronics, vol. 1, pp. 314-321, May. 2018.
  53. ZHU, J. – JIA, L. – HUANG, R.: Electrospinning poly(l-lactic acid) piezoelectric ordered porous nanofibers for strain sensing and energy harvesting, Journal of Materials Science: Materials in Electronics, vol. 28, no. 2, pp. 12080-12085, Apr. 2017.
  54. YEDRISSOV, A. – KHRUSTALEV, D. – ALEKSEEV, A. – KHRUSTALEVA, A. – VETROVA, A.: New composite material for biodegradable electronics, Materials Today: Proceedings, vol. 49, no. 6, pp. 2443-2448, Jan. 2022.
  55. MATTANA, G. – BRIAND, D. – MARETTE, A. – QUINTERO, A. V. – de ROOIJ, N. F.: Polylactic acid as a biodegradable material for all-solution-processed organic electronic devices, Organic Electronics, vol. 17, pp. 77-86, Feb. 2015.
  56. SHETTY, S. D. – SHETTY, N.: Investigation of mechanical properties and applications of polylactic acids–a review, Materials Research Express, vol 6, no. 11, pp. 112002, Oct. 2019.
  57. PENG, X., et al.: A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators, Material Science, vol. 6, no. 26, pp. eaba9624, Jun. 2020.
  58. KHALID, M. A. U., et al.: Resistive switching device based on SrTiO3/PVA hybrid composite thin film as active layer, Polymer, vol. 189, pp. 122183, Feb. 2020.
  59. HMAR, J. J. L.: Flexible resistive switching bistable memory devices using ZnO nanoparticles embedded in polyvinyl alcohol (PVA) matrix and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), RSC Advances, vol. 8, no. 36, pp. 20423-20433, Jun. 2018.
DOI: https://doi.org/10.2478/aei-2024-0014 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 19 - 26
Submitted on: Jun 27, 2024
Accepted on: Sep 13, 2024
Published on: Nov 17, 2024
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Leoš Ondriš, Oľga Fričová, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.