Have a personal or library account? Click to login
Improvement of Classification Results of Convolutional Neural Networks Using Various Gan-Based Augmentation Techniques Cover

Improvement of Classification Results of Convolutional Neural Networks Using Various Gan-Based Augmentation Techniques

Open Access
|Nov 2024

References

  1. LeCUN, Y. – BENGIO, Y., – HINTON, G.: (2015). Deep learning. nature, 521(7553), 436-444.
  2. GOODFELLOW, I. – POUGET-ABADIE, J. – MIRZA, M. – XU, B. – WARDE-FARLEY, D. – OZAIR, S.– BENGIO, Y.: (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
  3. FRID-ADAR, M. – DIAMANT, I. – KLANG, E. – AMITAI, M. – GOLDBERGER, J. – GREENSPAN, H.: (2018). GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification, Neurocomputing, 321, 321–331.
  4. LU, C. Y. – RUSTIA, D. J. A. – LIN, T. T.: (2019). Generative adversarial network based image augmentation for insect pest classification enhancement. IFAC-PapersOnLine, 52(30), 1-5.
  5. MARIANI, G. – SCHEIDEGGER, F. – ISTRATE, R. – BEKAS, C. – MALOSSI, C.: (2018). Bagan: Data augmentation with balancing gan, arXiv preprint arXiv:1803.09655.
  6. ALBAWI, S., ABED MMOHAMMED, T. – ALZAWI, S.: (2017). Understanding of a convolutional neural network, 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, pp. 1-6, doi: 10.1109/ICEngTechnol.2017.8308186.
  7. O’SHEA, K. – NASH, R.: (2015). An introduction to convolutional neural networks, arXiv preprint arXiv:1511.08458.
  8. RADFORD, A. – METZ, L. – CHINTALA, S.: (2015). Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
  9. ANTONIOU, A. – STORKEY, A. – EDWARDS, H.: (2017). Data augmentation generative adversarial networks. arXiv preprint arXiv:1711.04340.
  10. ARJOVSKY, M. – CHINTALA, S. – BOTTLOU, L.: (2017, July). Wasserstein generative adversarial networks. In International conference on machine learning (pp. 214-223). PMLR.
  11. SOARES, E. – ANGELOV, P. – BIASO, S. – FROES, M. H. – ABE, D. K.: (2020). SARS-CoV-2 CT-scan dataset: A large dataset of real patients CT scans for SARS-CoV-2 identification. MedRxiv, 2020-04.
  12. SOARES, E. – ANGELOV, P. – BIASO, S. – FROES, M. H. – ABE, D. K.: (2020). SARS-COV-2 Ct-Scan Dataset, Available at: https://www.kaggle.com/datasets/plameneduardo/sarscov2-ctscan-dataset (accessed on 12th of August 12, 2024)
  13. CHAKRABARTY, N.: (2019). Brain MRI Images for Brain Tumor Detection, Available at: https://www.kaggle.com/datasets/navoneel/brain-mri-images-for-brain-tumor-detection (accessed on 12th of August 12, 2024)
  14. ACKERMANN, S. – SCHAWINSKI, K. – ZHANG, C. – WEIGEL, A. K. – TURP, M. D.: (2018). Using transfer learning to detect galaxy mergers. Monthly Notices of the Royal Astronomical Society, 479(1), 415-425.
  15. SCHAWINSKI, K.: (2018). Transfer Learning, Available at: https://github.com/SpaceML/merger_transfer_learning (accessed on 12th of August 12, 2024)
  16. BECKER, R. H. – WHITE, R. L. – Helfand, D. J.: (1995). The FIRST survey: faint images of the radio sky at twenty centimeters. Astrophysical Journal v. 450, p. 559, 450, 559.
  17. KORTSTRöM, J. – USKI, M. – TIIRA, T.: (2016). Automatic classification of seismic events within a regional seismograph network. Computers and Geo-sciences, 87, 22-30.
DOI: https://doi.org/10.2478/aei-2024-0013 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 11 - 18
Submitted on: Jun 30, 2024
Accepted on: Aug 13, 2024
Published on: Nov 17, 2024
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Lenka Kališková, Peter Butka, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.