References
- A. M. ALI, B. BENJDIRA, A. KOUBAA, W. ELSHAFAI, Z. KHAN, and W. BOULILA. Vision transformers in image restoration: A survey. Sensors, 23(5):2385, 2023.
- D. M. ALLEN. Mean square error of prediction as a criterion for selecting variables. Technometrics, 13(3):469–475, 1971.
- A. BINDER, G. MONTAVON, S. LAPUSCHKIN, K.-R. MÜLLER, and W. SAMEK. Layer-wise relevance propagation for neural networks with local renormalization layers. In Artificial Neural Networks and Machine Learning–ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25, pages 63–71. Springer, 2016.
- D. R. COX. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B: Statistical Methodology, 20(2):215–232, 1958.
- S. GHOLIZADEH and N. ZHOU. Model explainability in deep learning based natural language processing. arXiv preprint arXiv:2106.07410, 2021.
- I. J. GOODFELLOW, J. POUGET-ABADIE, M. MIRZA, B. XU, D. WARDE-FARLEY, S. OZAIR, A. COURVILLE, and Y. BENGIO. Generative adversarial networks, 2014.
- Y. GUO, G. CAMPORESE, W. YANG, A. SPERDUTI, and L. BALLAN. Conditional variational capsule network for open set recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 103–111, 2021.
- K. HE, X. ZHANG, S. REN, and J. SUN. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
- G. E. HINTON, A. KRIZHEVSKY, and S. D. WANG. Transforming auto-encoders. In Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21, pages 44–51. Springer, 2011.
- G. E. HINTON, S. SABOUR, and N. FROSST. Matrix capsules with em routing. In International conference on learning representations, 2018.
- D. P. KINGMA and M. WELLING. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- M. A. KRAMER. Nonlinear principal component analysis using autoassociative neural networks. AIChE journal, 37(2):233–243, 1991.
- A. KRIZHEVSKY, G. HINTON, et al. Learning multiple layers of features from tiny images. 2009.
- S. KULLBACK and R. A. LEIBLER. On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.
- R. LALONDE and U. BAGCI. Capsules for object segmentation. arXiv preprint arXiv:1804.04241, 2018.
- J. LONG, E. SHELHAMER, and T. DARRELL. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.
- V. MAZZIA, F. SALVETTI, and M. CHIABERGE. Efficient-capsnet: Capsule network with self-attention routing. Scientific reports, 11(1):14634, 2021.
- M. NICKPARVAR. Brain tumor mri dataset, 2021.
- K. PAWAR and V. Z. ATTAR. Assessment of Autoen-coder Architectures for Data Representation, pages 101–132. Springer International Publishing, Cham, 2020.
- J. RAJASEGARAN, V. JAYASUNDARA, S. JAYASEKARA, H. JAYASEKARA, S. SENEVIRATNE, and R. RODRIGO. Deepcaps: Going deeper with capsule networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10725–10733, 2019.
- S. SABOUR, N. FROSST, and G. E. HINTON. Dynamic routing between capsules. Advances in neural information processing systems, 30, 2017.
- W. J. SCHEIRER, A. De REZENDE ROCHA, A. SAPKOTA, and T. E. BOULT. Toward open set recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):1757–1772, 2012.
- R. R. SELVARAJU, M. COGSWELL, A. DAS, R. VEDANTAM, D. PARIKH, and D. BATRA. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.
- K. SOHN, H. LEE, and X. YAN. Learning structured output representation using deep conditional generative models. Advances in neural information processing systems, 28, 2015.
- Y.-H. H. TSAI, N. SRIVASTAVA, H. GOH, and R. SALAKHUTDINOV. Capsules with inverted dot-product attention routing. arXiv preprint arXiv:2002.04764, 2020.
- N. VERMA, D. KAUR, and L. CHAU. Image reconstruction using enhanced vision transformer. arXiv preprint arXiv:2307.05616, 2023.
- X. WANG, K. YU, S. WU, J. GU, Y. LIU, Ch. DONG, Y. QIAO, and Ch. CHANGE L. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops, pages 0–0, 2018.
- Y. WANG, C. QIN, Y. BAI, Y. XU, X. MA, and Y. FU. Making reconstruction-based method great again for video anomaly detection. In 2022 IEEE International Conference on Data Mining (ICDM), pages 1215–1220. IEEE, 2022.
- J. YAMANAKA, S. KUWASHIMA, and T. KURITA. Fast and accurate image super resolution by deep cnn with skip connection and network in network. In Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24, pages 217–225. Springer, 2017.
