Have a personal or library account? Click to login
Interpretability Using Reconstruction of Capsule Networks Cover

Interpretability Using Reconstruction of Capsule Networks

Open Access
|Sep 2024

References

  1. A. M. ALI, B. BENJDIRA, A. KOUBAA, W. ELSHAFAI, Z. KHAN, and W. BOULILA. Vision transformers in image restoration: A survey. Sensors, 23(5):2385, 2023.
  2. D. M. ALLEN. Mean square error of prediction as a criterion for selecting variables. Technometrics, 13(3):469–475, 1971.
  3. A. BINDER, G. MONTAVON, S. LAPUSCHKIN, K.-R. MÜLLER, and W. SAMEK. Layer-wise relevance propagation for neural networks with local renormalization layers. In Artificial Neural Networks and Machine Learning–ICANN 2016: 25th International Conference on Artificial Neural Networks, Barcelona, Spain, September 6-9, 2016, Proceedings, Part II 25, pages 63–71. Springer, 2016.
  4. D. R. COX. The regression analysis of binary sequences. Journal of the Royal Statistical Society Series B: Statistical Methodology, 20(2):215–232, 1958.
  5. S. GHOLIZADEH and N. ZHOU. Model explainability in deep learning based natural language processing. arXiv preprint arXiv:2106.07410, 2021.
  6. I. J. GOODFELLOW, J. POUGET-ABADIE, M. MIRZA, B. XU, D. WARDE-FARLEY, S. OZAIR, A. COURVILLE, and Y. BENGIO. Generative adversarial networks, 2014.
  7. Y. GUO, G. CAMPORESE, W. YANG, A. SPERDUTI, and L. BALLAN. Conditional variational capsule network for open set recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 103–111, 2021.
  8. K. HE, X. ZHANG, S. REN, and J. SUN. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.
  9. G. E. HINTON, A. KRIZHEVSKY, and S. D. WANG. Transforming auto-encoders. In Artificial Neural Networks and Machine Learning–ICANN 2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17, 2011, Proceedings, Part I 21, pages 44–51. Springer, 2011.
  10. G. E. HINTON, S. SABOUR, and N. FROSST. Matrix capsules with em routing. In International conference on learning representations, 2018.
  11. D. P. KINGMA and M. WELLING. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
  12. M. A. KRAMER. Nonlinear principal component analysis using autoassociative neural networks. AIChE journal, 37(2):233–243, 1991.
  13. A. KRIZHEVSKY, G. HINTON, et al. Learning multiple layers of features from tiny images. 2009.
  14. S. KULLBACK and R. A. LEIBLER. On information and sufficiency. The annals of mathematical statistics, 22(1):79–86, 1951.
  15. R. LALONDE and U. BAGCI. Capsules for object segmentation. arXiv preprint arXiv:1804.04241, 2018.
  16. J. LONG, E. SHELHAMER, and T. DARRELL. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3431–3440, 2015.
  17. V. MAZZIA, F. SALVETTI, and M. CHIABERGE. Efficient-capsnet: Capsule network with self-attention routing. Scientific reports, 11(1):14634, 2021.
  18. M. NICKPARVAR. Brain tumor mri dataset, 2021.
  19. K. PAWAR and V. Z. ATTAR. Assessment of Autoen-coder Architectures for Data Representation, pages 101–132. Springer International Publishing, Cham, 2020.
  20. J. RAJASEGARAN, V. JAYASUNDARA, S. JAYASEKARA, H. JAYASEKARA, S. SENEVIRATNE, and R. RODRIGO. Deepcaps: Going deeper with capsule networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10725–10733, 2019.
  21. S. SABOUR, N. FROSST, and G. E. HINTON. Dynamic routing between capsules. Advances in neural information processing systems, 30, 2017.
  22. W. J. SCHEIRER, A. De REZENDE ROCHA, A. SAPKOTA, and T. E. BOULT. Toward open set recognition. IEEE transactions on pattern analysis and machine intelligence, 35(7):1757–1772, 2012.
  23. R. R. SELVARAJU, M. COGSWELL, A. DAS, R. VEDANTAM, D. PARIKH, and D. BATRA. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE international conference on computer vision, pages 618–626, 2017.
  24. K. SOHN, H. LEE, and X. YAN. Learning structured output representation using deep conditional generative models. Advances in neural information processing systems, 28, 2015.
  25. Y.-H. H. TSAI, N. SRIVASTAVA, H. GOH, and R. SALAKHUTDINOV. Capsules with inverted dot-product attention routing. arXiv preprint arXiv:2002.04764, 2020.
  26. N. VERMA, D. KAUR, and L. CHAU. Image reconstruction using enhanced vision transformer. arXiv preprint arXiv:2307.05616, 2023.
  27. X. WANG, K. YU, S. WU, J. GU, Y. LIU, Ch. DONG, Y. QIAO, and Ch. CHANGE L. Esrgan: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops, pages 0–0, 2018.
  28. Y. WANG, C. QIN, Y. BAI, Y. XU, X. MA, and Y. FU. Making reconstruction-based method great again for video anomaly detection. In 2022 IEEE International Conference on Data Mining (ICDM), pages 1215–1220. IEEE, 2022.
  29. J. YAMANAKA, S. KUWASHIMA, and T. KURITA. Fast and accurate image super resolution by deep cnn with skip connection and network in network. In Neural Information Processing: 24th International Conference, ICONIP 2017, Guangzhou, China, November 14-18, 2017, Proceedings, Part II 24, pages 217–225. Springer, 2017.
DOI: https://doi.org/10.2478/aei-2024-0010 | Journal eISSN: 1338-3957 | Journal ISSN: 1335-8243
Language: English
Page range: 15 - 22
Submitted on: May 23, 2024
Accepted on: Jul 15, 2024
Published on: Sep 19, 2024
Published by: Technical University of Košice
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Dominik Vranay, Mykhailo Ruzmetov, Peter Sinčák, published by Technical University of Košice
This work is licensed under the Creative Commons Attribution 4.0 License.