References
- Rathinasuriyan C, Pavithra E, Sankar R, Kumar VSS (2021) Current Status and Development of Submerged Friction Stir Welding: A Review. Int J of Precis Eng and Manuf-Green Tech 8:687–701. https://doi.org/10.1007/s40684-020-00187-6
- Subramanian S, Natarajan E, Khalfallah A, et al (2025) Current Trends and Emerging Strategies in Friction Stir Spot Welding for Lightweight Structures: Innovations in Tool Design, Robotics, and Composite Reinforcement — A Review. Crystals 15:556. https://doi.org/10.3390/cryst15060556
- Silva WJM, Soares RF, Araújo WM, et al (2025) Mechanical and Metallographic Characterization of Friction Stir Welded EN AW 1200 Aluminum Sheets: Analysis of the Effect of Process Parameters and Pin Geometry. Soldag insp 30:e3010. https://doi.org/10.1590/0104-9224/si30.10
- Melaku LE, Tomków J (2025) Dissimilar friction stir welding of aluminum to polymer: a review. Int J Adv Manuf Technol 140:2377–2396. https://doi.org/10.1007/s00170-025-16393-y
- Ahmad T, Lone NF, Khan NZ, et al (2025) Surface properties of friction stir welded dissimilar joints of AA7075 and Mg-WE43 alloys: Effect of positional arrangement. J Magnes Alloy 13:398–413. https://doi.org/10.1016/j.jma.2024.12.022
- Shrivastava A, Krones M, Pfefferkorn FE (2015) Comparison of energy consumption and environmental impact of friction stir welding and gas metal arc welding for aluminum. CIRP J Manuf Sci Technol 9:159–168. https://doi.org/10.1016/j.cirpj.2014.10.001
- Eslami N, Hischer Y, Harms A, et al (2019) Optimization of Process Parameters for Friction Stir Welding of Aluminum and Copper Using the Taguchi Method. Metals 9:63. https://doi.org/10.3390/met9010063
- Kilic S, Ozturk F, Demirdogen MF (2025) A comprehensive literature review on friction stir welding: Process parameters, joint integrity, and mechanical properties. J Eng Res 13:122–130. https://doi.org/10.1016/j.jer.2023.09.005
- Janeczek A, Tomków J, Derazkola HA, et al (2024) Effect of underwater friction stir welding parameters on AA5754 alloy joints: experimental studies. Int J Adv Manuf Technol 134:5643–5655. https://doi.org/10.1007/s00170-024-14485-9
- Aziz SB, Dewan MW, Huggett DJ, et al (2016) Impact of Friction Stir Welding (FSW) Process Parameters on Thermal Modeling and Heat Generation of Aluminum Alloy Joints. Acta Metall Sin (Engl Lett) 29:869–883. https://doi.org/10.1007/s40195-016-0466-2
- Zhai M, Wu C, Su H (2020) Influence of tool tilt angle on heat transfer and material flow in friction stir welding. J Manuf Process 59:98–112. https://doi.org/10.1016/j.jmapro.2020.09.038
- Kosturek R, Torzewski J, Śnieżek L (2024) Study on Underwater Friction Stir Welding of AA7075-T651. Adv Sci Technol Res J 18:191–203. https://doi.org/10.12913/22998624/193529
- Heidarzadeh A, Javidani M, Mofarrehi M, et al (2021) Submerged Dissimilar Friction Stir Welding of AA6061 and AA7075 Aluminum Alloys: Microstructure Characterization and Mechanical Property. Metals 11:1592. https://doi.org/10.3390/met11101592
- Chitturi V, Pedapati SR, Awang M (2022) Mathematical Model for Friction Stir Lap Welded AA5052 and SS304 Joints and Process Parameters Optimization for High Joint Strength. Adv Mater Sci 22:5–22. https://doi.org/10.2478/adms-2022-0001
- Khalaf HI, Al-Sabur R, Abdullah ME, et al (2022) Effects of Underwater Friction Stir Welding Heat Generation on Residual Stress of AA6068-T6 Aluminum Alloy. Materials 15:2223. https://doi.org/10.3390/ma15062223
- Datta R, Kumar Gupta S, Bhargava M (2023) Comparison of underwater friction stir welded and conventional friction stir welded AA 5052 alloys based on the mechanical, formability and microstructure behaviour. Materials Today: Proceedings S221478532304779X. https://doi.org/10.1016/j.matpr.2023.09.108
- El-Sayed MM, Shash AY, Abd-Rabou M, ElSherbiny MG (2021) Welding and processing of metallic materials by using friction stir technique: A review. J Adv Join Process 3:100059. https://doi.org/10.1016/j.jajp.2021.100059
- Sucharitha M, Ravi Sankar B, Umamaheswarrao P (2020) A Review on Submerged Friction Stir Welding of Light Weight Alloys. IOP Conf Ser: Mater Sci Eng 954:012014. https://doi.org/10.1088/1757-899X/954/1/012014
- Wahid MohdA, Khan ZA, Siddiquee AN (2018) Review on underwater friction stir welding: A variant of friction stir welding with great potential of improving joint properties. Trans Nonferrous Met Soc China 28:193–219. https://doi.org/10.1016/S1003-6326(18)64653-9
- Saravanakumar R, Sirohi S, Pandey SM, et al (2024) Attributes of FSW and UWFSW butt joints of armour grade AA5083 aluminium alloy: Impact of tool pin profile. Heliyon 10:e38351. https://doi.org/10.1016/j.heliyon.2024.e38351
- Boukraa M, Chekifi T, Madani T, et al (2025) Enhancing Friction Stir Welding Performance for 2017AA Alloy through Cooling with Mediterranean Seawater. Exp Tech 49:189–201. https://doi.org/10.1007/s40799-024-00751-8
- Mousaab BM, Eddine CMND, Yazid AF, et al (2025) Experimental investigation of the impact of aqueous salinity on the performance of underwater friction stir welding. Int J Adv Manuf Technol 141:5447–5456. https://doi.org/10.1007/s00170-025-16928-3
- Iwaszko J, Kudła K (2022) Evolution of Microstructure and Properties of Air-Cooled Friction-Stir-Processed 7075 Aluminum Alloy. Materials 15:2633. https://doi.org/10.3390/ma15072633
- Liu XC, Li WT, Zhou YQ, et al (2023) Multiple effects of forced cooling on joint quality in coolant-assisted friction stir welding. J Mater Res Technol 25:4264–4276. https://doi.org/10.1016/j.jmrt.2023.06.248
- Su Y, Zhou M, Li W, et al (2025) Microstructural evolution and mechanical behavior of TA5 titanium alloy joint in low-temperature friction stir welding with various cooling rates. Eng Fail Anal 176:109667. https://doi.org/10.1016/j.engfailanal.2025.109667
- Myśliwiec P, Kubit A (2025) Integrated multiobjective optimization of RFSSW parameters for AA2024-T3 using ANOVA machine learning and NSGA II. Sci Rep 15:38029. https://doi.org/10.1038/s41598-025-21941-3
- Saravanakumar R, Rajasekaran T, Pandey C (2023) Optimisation of underwater friction stir welding parameters of aluminum alloy AA5083 using RSM and GRA. Proc Inst Mech Eng, Part E: J Process Mech Eng 237:2334–2348. https://doi.org/10.1177/09544089221134446
- D S, P S, Babu S D D, Roy V (2024) Optimization of parameters and formulation of numerical model employing GRA–PCA and RSM approach for friction stir welded Ti–6Al–4V alloy joints. Mater Res Express 11:056511. https://doi.org/10.1088/2053-1591/ad48e3
- Zhang Z, Xiao YH, Liu CK, Li JY (2024) Experimental and numerical studies of relationship between microstructures and mechanical properties in friction stir welding under water. J Mater Sci 59:19716–19733. https://doi.org/10.1007/s10853-024-10357-5
- Lacki P, Derlatka A, Więckowski W, Adamus J (2024) Development of FSW Process Parameters for Lap Joints Made of Thin 7075 Aluminum Alloy Sheets. Materials 17:672. https://doi.org/10.3390/ma17030672
- Esch P, Klocke F, Bauernhansl T, Schneider M (2021) Methodic development of laser micro structured cutting tools with microscale textures for AW7075 aluminum alloy using a Plackett– Burman screening design. CIRP J Manuf Sci Technol 32:188–195. https://doi.org/10.1016/j.cirpj.2020.06.008
- Wang J, Chen X, Yang L (2022) Reliability-based multi-objective optimization incorporating process–property–performance relationship of double-pulse MIG welding using hybrid optimization strategy. Struct Multidisc Optim 65:148. https://doi.org/10.1007/s00158-021-03103-x
- Fydrych D, Świerczyńska A, Tomków J (2013) Diffusible Hydrogen Control in Flux Cored Arc Welding Process. KEM 597:171–178. https://doi.org/10.4028/www.scientific.net/KEM.597.171
- ISO 17637:2017-02 - Non-destructive testing of welds — Visual testing of fusion-welded joints
- ISO 4136:2022-12 - Destructive tests on welds in metallic materials — Transverse tensile test
- Jonda ES, Fydrych D, Łatka L, Myalska-Głowacka H (2024) The Use of Cluster Analysis to Assess the Wear Resistance of Cermet Coatings Sprayed by High Velocity Oxy-Fuel on Magnesium Alloy Substrate. Adv Sci Technol Res J 18:216–227. https://doi.org/10.12913/22998624/188877
- Aghajani Derazkola H, Kordani N, Aghajani Derazkola H (2021) Effects of friction stir welding tool tilt angle on properties of Al-Mg-Si alloy T-joint. CIRP J Manuf Sci Technol 33:264–276. https://doi.org/10.1016/j.cirpj.2021.03.015
- Kosturek R, Torzewski J, Wachowski M, Śnieżek L (2022) Effect of Welding Parameters on Mechanical Properties and Microstructure of Friction Stir Welded AA7075-T651 Aluminum Alloy Butt Joints. Materials 15:5950. https://doi.org/10.3390/ma15175950
- Uday KN, Rajamurugan G (2023) Influence of process parameters and its effects on friction stir welding of dissimilar aluminium alloy and its composites – a review. J Adhes Sci Technol 37:767–800. https://doi.org/10.1080/01694243.2022.2053348
- Pizetta Zordão LH, Oliveira VA, Totten GE, Canale LCF (2019) Quenching power of aqueous salt solution. Int J Heat Mass Transf 140:807–818. https://doi.org/10.1016/j.ijheatmasstransfer.2019.06.036
- Chandra PC, Mondal AK, Nirsanametla Y, et al (2025) Impact of Tool Plunge Depth, Tool Tilt Angle, and Tool Offset on Microstructure, Mechanical Properties, and Fracture Morphology of Friction Stir Welded Pure Copper Butt Joints. J of Materi Eng and Perform 34:22021–22038. https://doi.org/10.1007/s11665-025-10840-3
- Sabry I, Singh VP, Alkhedher M, et al (2024) Effect of rotational speed and penetration depth on Al-Mg-Si welded T-joints through underwater and conventional friction stir welding. J Adv Join Process 9:100207. https://doi.org/10.1016/j.jajp.2024.100207
- Alfattani R, Yunus M, Mohamed AF, et al (2021) Assessment of the Corrosion Behavior of Friction-Stir-Welded Dissimilar Aluminum Alloys. Materials 15:260. https://doi.org/10.3390/ma15010260
- Venugopal V, Pratap Singh V, Kuriachen B (2023) Underwater friction stir welding of marine grade aluminium alloys: A review. Mater Today Proc S221478532304052X. https://doi.org/10.1016/j.matpr.2023.07.182
- Lipińska M (2023) Microstructure and Mechanical Properties of the Joints from Coarse- and Ultrafine-Grained Al-Mg-Si Alloy Obtained via Friction Stir Welding. Materials 16:6287. https://doi.org/10.3390/ma16186287
- Abbasi Gharacheh M, Kokabi AH, Daneshi GH, et al (2006) The influence of the ratio of “rotational speed/traverse speed” (ω/v) on mechanical properties of AZ31 friction stir welds. Int J Mach Tools and Manuf 46:1983–1987. https://doi.org/10.1016/j.ijmachtools.2006.01.007
- Fu R, Zhang J, Li Y, et al (2013) Effect of welding heat input and post-welding natural aging on hardness of stir zone for friction stir-welded 2024-T3 aluminum alloy thin-sheet. Mater Sci and Eng A 559:319–324. https://doi.org/10.1016/j.msea.2012.08.105
- Li Y, Zhou Z, Yin L, et al (2023) Thermal Cycling, Microstructure, and Mechanical Properties of Al-Mg-Si-Cu Alloy Bobbin Tool Friction Stir Welded Joints Based on Thermal Index. Coatings 13:1607. https://doi.org/10.3390/coatings13091607
- Abdullah ME, M. Rohim MN, Mohammed MM, Derazkola HA (2023) Effects of Partial-Contact Tool Tilt Angle on Friction Stir Welded AA1050 Aluminum Joint Properties. Materials 16:4091. https://doi.org/10.3390/ma16114091
- Rathinasuriyan C, Puviyarasan M, Sankar R, Selvakumar V (2024) Effect of process parameters on weld geometry and mechanical properties in friction stir welding of AA2024 and AA7075 alloys. J Alloy Metall Syst 7:100091. https://doi.org/10.1016/j.jalmes.2024.100091
- Essa ARS, Aboud ARK, Ahmed MMZ, et al (2025) Friction stir welding of aluminum alloy 6082-T6 using eccentric shoulder tools to eliminate the need for tool tilting. Sci Rep 15:8801. https://doi.org/10.1038/s41598-025-91065-1
- Kosturek R, Ślęzak T, Torzewski J (2024) Structural Integrity of AA7075-T651 UWFSW Joints. Adv Mater Sci 24:98–110. https://doi.org/10.2478/adms-2024-0025
- Kim W-K, Won S-T, Goo B-C (2010) A study on mechanical characteristics of the friction stir welded A6005-T5 extrusion. Int J Precis Eng Manuf 11:931–936. https://doi.org/10.1007/s12541-010-0113-1