Have a personal or library account? Click to login
Influence of Laser Beam Oscillation on Weld Geometry and Microstructure of AISI 304 Stainless Steel Cover

Influence of Laser Beam Oscillation on Weld Geometry and Microstructure of AISI 304 Stainless Steel

Open Access
|Jan 2026

References

  1. Górka J, Suder W, Kciuk M, et al (2023) Assessment of the Laser Beam Welding of Galvanized Car Body Steel with an Additional Organic Protective Layer. Materials 16:. https://doi.org/10.3390/ma16020670
  2. Krawczyk J, Pańcikiewicz K, Frocisz Ł, et al (2025) Laser Welding and Remelting of DC05 Low Carbon Steel. Arch Metall Mater 691–699. https://doi.org/10.24425/amm.2025.153470
  3. Majkowska-Marzec B, Tęczar P, Bartmański M, et al (2020) Mechanical and Corrosion Properties of Laser Surface-Treated Ti13Nb13Zr Alloy with MWCNTs Coatings. Materials 13:. https://doi.org/10.3390/ma13183991
  4. Kwidzińska DB, Jażdżewska M, Fydrych D (2025) The influence of selected metal oxides and laser modification on the surfaces of titanium alloys – Bibliometric and systematic review. Opt Laser Technol 184:112592. https://doi.org/10.1016/j.optlastec.2025.112592
  5. Wojdat TK, Piwowarczyk T (2024) Influence of Laser Micro-Texturing and Plasma Treatment on Adhesive Bonding Properties of WC-Co Carbides with Steel. Materials 17:. https://doi.org/10.3390/ma17235999
  6. Adamiak M, Czupryński A, Janicki D, Górka J (2016) The causes of high power diode laser brazed seams fractures of dissimilar materials. In: Laser Technology 2016: Progress and Applications of Lasers. SPIE, pp 182–190
  7. Adamiec J, Wyciślik-Sośnierz J, Matusiak J, et al (2025) Morphology of Fumes from Hybrid Laser–Arc Welding of X5CrNi18-10 Stainless Steel. Materials 18:5534. https://doi.org/10.3390/ma18245534
  8. Janiczak R, Pańcikiewicz K (2021) Laser welding of austenitic ferrofluid container for the KRAKsat satellite. Weld World 65:1347–1357. https://doi.org/10.1007/s40194-021-01103-5
  9. Landowski M, Simon SC, Breznay C, et al (2024) Effects of preheating on laser beam–welded NSSC 2120 lean duplex steel. Int J Adv Manuf Technol 130:2009–2021. https://doi.org/10.1007/s00170-023-12840-w
  10. Landowski M (2019) Influence of Parameters of Laser Beam Welding on Structure of 2205 Duplex Stainless Steel. Adv Mater Sci 19:21–31. https://doi.org/10.2478/adms-2019-0002
  11. Gennari C, Miranda-Pérez AF, Pezzato L, et al (2024) Lean duplex stainless steels welded by LBW subjected to corrosion testing. MRS Adv 9:1887–1890. https://doi.org/10.1557/s43580-024-00981-3
  12. Gao W, Wang J, Zhao H, et al (2025) Impact of Welding Heat Input on the Mechanical and Corrosion Properties of Lean Duplex Stainless Steel UNS S32001 Laser-Welded Joints. J Mater Eng Perform 34:13861–13871. https://doi.org/10.1007/s11665-024-10140-2
  13. Zhang M, Tang K, Zhang J, et al (2018) Effects of processing parameters on underfill defects in deep penetration laser welding of thick plates. Int J Adv Manuf Technol 96:491–501. https://doi.org/10.1007/s00170-018-1613-x
  14. Xu J, Rong Y, Huang Y, et al (2018) Keyhole-induced porosity formation during laser welding. J Mater Process Technol 252:720–727. https://doi.org/10.1016/j.jmatprotec.2017.10.038
  15. Kosturek R, Grzelak K, Torzewski J, et al (2022) Microstructure and Mechanical Properties of Sc-Modified AA2519-T62 Laser Beam Welded Butt Joints. Adv Mater Sci 22:57–69. https://doi.org/10.2478/adms-2022-0019
  16. Landowski M, Świerczyńska A, Rogalski G, et al (2020) Autogenous Fiber Laser Welding of 316L Austenitic and 2304 Lean Duplex Stainless Steels. Materials 13:. https://doi.org/10.3390/ma13132930
  17. Sirohi S, Pandey SM, Tiwari V, et al (2023) Impact of laser beam welding on mechanical behaviour of 2.25Cr–1Mo (P22) steel. Int J Press Vessels Pip 201:104867. https://doi.org/10.1016/j.ijpvp.2022.104867
  18. Kurc-Lisiecka A, Lisiecki A (2018) Automated Laser Welding of AISI 304 Stainless Steel by Disk Laser. Arch Metall Mater 2018 Vol 63 No 4 1663-1672
  19. Sisodia RPS, Gáspár M (2021) Investigation of Metallurgical and Mechanical Properties of Laser Beam Welded and Post-weld Heat Treated DP1400 Steel. J Mater Eng Perform 30:1703–1710. https://doi.org/10.1007/s11665-021-05469-x
  20. Tuz L, Sokołowski Ł, Stano S, et al (2023) Effect of Post-Weld Heat Treatment on Microstructure and Hardness of Laser Beam Welded 17-4 PH Stainless Steel. Materials 16:. https://doi.org/10.3390/ma16041334
  21. Liu Y, Wang J, Zhang W (2025) Effect of gap distance on forming and properties of laser welded joints of QP980/DP780 dissimilar steels. Weld World. https://doi.org/10.1007/s40194-025-02137-9
  22. Vollertsen F, Grünenwald S (2008) Defects and process tolerances in welding of thick plates. In: ICALEO 2008: 27th International Congress on Laser Materials Processing, Laser Microprocessing and Nanomanufacturing. Laser Institute of AmericaLIA, Temecula, California, USA, p 1004
  23. Volpp J, Frostevarg J (2021) Elongated cavities during keyhole laser welding. Mater Des 206:109835. https://doi.org/10.1016/j.matdes.2021.109835
  24. Giudice F, Missori S, Sili A, et al (2024) Dissimilar Welding of Thick Ferritic/Austenitic Steels Plates Using Two Simultaneous Laser Beams in a Single Pass. J Manuf Mater Process 8:. https://doi.org/10.3390/jmmp8040134
  25. Krishna Murthy KR, Sanei R, Sharma A, et al (2025) Impact of Beam Shape and Frequency on Weld Seam Geometry and Penetration Depth Using a Coherent Beam Combining Laser. Appl Sci 15:9432. https://doi.org/10.3390/app15179432
  26. Horník P, Šebestová H, Novotný J, Mrňa L (2022) Laser beam oscillation strategy for weld geometry variation. J Manuf Process 84:216–222. https://doi.org/10.1016/j.jmapro.2022.10.016
  27. Franco D, Oliveira JP, Santos TG, Miranda RM (2021) Analysis of copper sheets welded by fiber laser with beam oscillation. Opt Laser Technol 133:106563. https://doi.org/10.1016/j.optlastec.2020.106563
  28. Grünenwald S, Unt A, Salminen A (2018) Investigation of the influence of welding parameters on the weld geometry when welding structural steel with oscillated high-power laser beam. Procedia CIRP 74:461–465. https://doi.org/10.1016/j.procir.2018.08.150
  29. Kwieciński K, Lota K, Kiełbasiński M, et al (2022) Advanced Methods of Joining Battery Cells in the Automotive Industry. Bull Inst Weld 15–22. https://doi.org/10.17729/ebis.2022.5/2
  30. Caprio L, Borzoni G, Previtali B, Demir AG (2022) Hand-Held Laser Welding of AISI301LN for components with aesthetic requirements: Toward the integration of machine and human intelligence. J Laser Appl 35:012008. https://doi.org/10.2351/7.0000746
  31. Kumar A (2025) Exploring Manual Laser Oscillation Welding of Stainless Steel in Different Joint Configurations. Lasers Manuf Mater Process 12:1037–1060. https://doi.org/10.1007/s40516-025-00319-3
  32. Wang Z, Oliveira JP, Zeng Z, et al (2019) Laser beam oscillating welding of 5A06 aluminum alloys: Microstructure, porosity and mechanical properties. Opt Laser Technol 111:58–65. https://doi.org/10.1016/j.optlastec.2018.09.036
  33. Zhang C, Yu Y, Chen C, et al (2020) Suppressing porosity of a laser keyhole welded Al-6Mg alloy via beam oscillation. J Mater Process Technol 278:116382. https://doi.org/10.1016/j.jmatprotec.2019.116382
  34. Fan Y, Cao J, Zhang J, et al (2024) Stable production of dissimilar steel joints in construction machinery by narrow gap oscillating laser welding. J Mater Res Technol 30:1403–1413. https://doi.org/10.1016/j.jmrt.2024.03.126
  35. Zheng C, Yu W (2018) Effect of low-temperature on mechanical behavior for an AISI 304 austenitic stainless steel. Mater Sci Eng A 710:359–365. https://doi.org/10.1016/j.msea.2017.11.003
  36. Landowski M, Łabanowski J, Jurkowski M (2025) Effect of solution heat treatment on mechanical properties of Manaurite XM reformer tubes after long term service at elevated temperatures. Adv Sci Technol Res J 19:220–228. https://doi.org/10.12913/22998624/200705
  37. Monteiro SN, Nascimento LFC, Lima ÉP, et al (2017) Strengthening of stainless steel weldment by high temperature precipitation. J Mater Res Technol 6:385–389. https://doi.org/10.1016/j.jmrt.2017.09.001
  38. Fan S, Jia L, Lyu X, et al (2017) Experimental investigation of austenitic stainless steel material at elevated temperatures. Constr Build Mater 155:267–285. https://doi.org/10.1016/j.conbuildmat.2017.08.047
  39. Walczak M, Szala M, Okuniewski W, et al (2022) Assessment of Corrosion Resistance and Hardness of Shot Peened X5CrNi18-10 Steel. Materials 15:. https://doi.org/10.3390/ma15249000
  40. Mao Z, Farkoosh AR, Seidman DN (2024) Effects of alloying elements on carbon diffusion in the austenite (f.c.c.) and ferrite (b.c.c.) phases
  41. Zhao Y, Liu H-L, Wei L-L, Chen L-Q (2023) An overview on the novel heat-resistant ferritic stainless steels. Tungsten 5:467–480. https://doi.org/10.1007/s42864-022-00171-4
  42. Szala M, Walczak M, Pałka T, et al (2025) Comparison of cavitation erosion and sliding wear resistance of welded CoCrWC and NiCrBSi hardfacings, AISI 316L stainless steel, and S235JR mild steel. Adv Sci Technol Res J 19:275–291. https://doi.org/10.12913/22998624/209577
  43. Köse C, Topal C (2023) Dissimilar laser beam welding of AISI 2507 super duplex stainless to AISI 317L austenitic stainless steel. Mater Sci Eng A 862:144476. https://doi.org/10.1016/j.msea.2022.144476
  44. Simon V, Varbai B, Abaffy K, Gyura L (2024) The Effects of Laser Power and Travel Speed on Weld Geometry in the case of Manual Laser Welding. Acta Mater Transylvanica 7:44–47. https://doi.org/10.33924/amt-2024-01-08
  45. Pańcikiewicz K, Świerczyńska A, Hućko P, Tumidajewicz M (2020) Laser Dissimilar Welding of AISI 430F and AISI 304 Stainless Steels. Materials 13:4540. https://doi.org/10.3390/ma13204540
  46. Danielewski H, Kurp P, Skrzypczyk A, et al (2025) Properties and Microstructure Evaluation of Laser-Welded TP347—TP904L High-Alloy, Stainless Steels Joints, Modified with 309L Filler. Materials 18:. https://doi.org/10.3390/ma18245633
  47. Sathiya P, Abdul Jaleel MY (2011) Influence of shielding gas mixtures on bead profile and microstructural characteristics of super austenitic stainless steel weldments by laser welding. Int J Adv Manuf Technol 54:525–535. https://doi.org/10.1007/s00170-010-2967-x
  48. Baghdadchi A, Hosseini VA, Hurtig K, Karlsson L (2021) Promoting austenite formation in laser welding of duplex stainless steel—impact of shielding gas and laser reheating. Weld World 65:499–511. https://doi.org/10.1007/s40194-020-01026-7
  49. Farhadipour P, Dehghan S, Barka N, et al (2024) A study on effect of laser overlay welding parameters of stainless steel 301 LN: tensile test, microstructure analysis and microhardness evaluation. Weld Int 38:409–421. https://doi.org/10.1080/09507116.2024.2342342
  50. Datta S, Raza MS, Muvvala G, et al (2023) The effect of different laser head angles and shielding gas supply systems to maximize the depth of penetration by minimizing the plasma shielding effect in fiber laser welding of 3-mm thick NiTinol sheet. Optik 283:170903. https://doi.org/10.1016/j.ijleo.2023.170903
  51. Meng X, Putra SN, Bachmann M, et al (2024) A fundamental study of physical mechanisms of wineglass-shaped fusion zone profile in laser melting. J Mater Process Technol 324:118265. https://doi.org/10.1016/j.jmatprotec.2023.118265
  52. Rogalski G, Świerczyńska A, Fydrych D (2023) Determination of t8/5 cooling times for underwater local dry welding of steel. Mar Struct 91:103477. https://doi.org/10.1016/j.marstruc.2023.103477
  53. Giudice F, Sili A, Giudice F, Sili A (2021) Weld Metal Microstructure Prediction in Laser Beam Welding of Austenitic Stainless Steel. Appl Sci 11:. https://doi.org/10.3390/app11041463
  54. Chamim M, Darmadi DB, Purnowidodo A, et al (2024) Influence of the welding thermal cycle on δ-ferrite evolution in the first layer of austenitic stainless steel (ASS) 308L produced by WAAM-GTAW. Case Stud Therm Eng 64:105489. https://doi.org/10.1016/j.csite.2024.105489
  55. Gupta SK, Patil AP, Rathod RC, et al (2024) Cold Metal Transfer Welding of Ferritic and Austenitic Stainless Steel: Microstructural, Mechanical, and Electrochemical Studies. J Mater Eng Perform 33:10663–10679. https://doi.org/10.1007/s11665-024-09743-6
  56. Teixeira RLP, Damasceno AIP, Nascimento R, et al (2026) Phase stability, microstructural evolution, and corrosion behavior of GTAW-welded AISI 316 L austenitic stainless steel. Mater Today Commun 50:114537. https://doi.org/10.1016/j.mtcomm.2025.114537
  57. García-García V, Reyes-Calderón F, Frasco-García OD, Alcantar-Modragón N (2022) Mechanical behavior of austenitic stainless-steel welds with variable content of δ-ferrite in the heat-affected zone. Eng Fail Anal 140:106618. https://doi.org/10.1016/j.engfailanal.2022.106618
  58. Muñoz JA, Dolgach E, Tartalini V, et al (2023) Microstructural Heterogeneity and Mechanical Properties of a Welded Joint of an Austenitic Stainless Steel. Metals 13:. https://doi.org/10.3390/met13020245
  59. Pavan AR, Arivazhagan B, Vasudevan M, et al (2023) Study on the microstructure and mechanical properties of hybrid laser + MIG welded joints of 316LN stainless steel. Opt Laser Technol 163:109410. https://doi.org/10.1016/j.optlastec.2023.109410
  60. Liu J, Nie Y, Feng Q, et al (2025) Influence of Welding Speed on the Microstructure and Mechanical Properties of Laser-Welded Joints in 316L Stainless Steel Sheets. Metals 15:. https://doi.org/10.3390/met15060624
  61. Zhang C, Li X, Gao M (2020) Effects of circular oscillating beam on heat transfer and melt flow of laser melting pool. J Mater Res Technol 9:9271–9282. https://doi.org/10.1016/j.jmrt.2020.06.030
DOI: https://doi.org/10.2478/adms-2025-0023 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 92 - 112
Submitted on: Sep 13, 2025
|
Accepted on: Dec 22, 2025
|
Published on: Jan 26, 2026
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2026 Michał Landowski, Adrian Wolski, Sebastian Stano, Grzegorz Chrobak, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.