References
- P. Wang and G. El-Fallah, “A Data-Driven Machine Learning Model for Radiation-Induced DBTT Shifts in RAFM Steels,” Journal of Nuclear Materials, vol. 584, 2025. DOI: 10.1016/j.jnucmat.2025.155984
- D. Dey et al., “Developing new high-entropy alloys with enhanced hardness using a hybrid machine learning approach: integrating interpretability and NSGA-II optimization,” Journal of Materials Science, vol. 60, no. 15, 2025. DOI: 10.1007/s10853-025-10729-5
- M. Hu, “Design of New Wrought Aluminium Alloys with Improved Performance Assisted by Machine Learning,” Ph.D. Thesis, The University of Queensland, 2024. [Online]. Available: https://espace.library.uq.edu.au/view/UQ:500ce4a
- Y. Han, H. Wang, P. Xu, Q. Chen and R. Zhang, “Deep learning-based framework for efficient design of multicomponent high-hardness high-entropy alloys,” ACS Applied Materials & Interfaces, vol. 17 (13), p. 19952-19965, 2025. DOI: 10.1021/acsami.4c23010
- T. Song, P. Cui, T. Xia, Y. Liu and J. Zhu, “Data-driven property-oriented composition design and feature analysis of lightweight high-entropy alloys,” Journal of Alloys and Compounds, vol. 1037, 2025. DOI: 10.1016/j.jallcom.2025.182197
- H. Bian and C. Fang, “Improved random forest for titanium alloy milling force prediction based on finite element-driven features,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 46, 2024. DOI: 10.1007/s40430-024-05241-x
- X. Geng et al., “Data-driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology,” Materials Genome Engineering Advances, vol. 1(1):e10, 2023. DOI: 10.1002/mgea.10
- H. Liu, D. Wu, F. Ding, W. Wang, S. Pan and P. Chen, “Machine learning-enhanced laser cladding process for high-entropy alloy coatings with concurrent strength and ductility optimization,” Materials Science and Engineering: A, vol. 943, 148788, 2025. DOI: 10.1016/j.msea.2025.148788
- A. G. Kusne et al., “On-the-fly machine-learning for high-throughput experiments: search for rare-earth-free permanent magnets,” Scientific Reports, vol. 4, 6367, 2014. DOI: 10.1038/srep06367
- Ö. Özdilli et al., “Optimal design of flat plate fin heat sinks using a computational fluid dynamics (CFD) and deep learning (DL)-based ensemble approach with explainable artificial intelligence (XAI) integration,” Applied Thermal Engineering, vol. 279, 127547, Jul. 2025. DOI: 10.1016/j.applthermaleng.2025.127547.
- K. Qian, “Automated Detection of Steel Defects via Machine Learning based on Real-Time Semantic Segmentation,” Proc. 3rd Int. Conf. Video and Image Processing (ICVIP ‘19), Shanghai, China, 2019, pp. 42–46, DOI: 10.1145/3376067.3376113
- S. Umbare, “Alloy Dataset,” Kaggle, 2023. [Online]. Available: https://www.kaggle.com/datasets/sohamumbare/alloy-dataset
- L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5–32, 2001. DOI: 10.1023/A:1010933404324
- T. Lookman et al., “Active learning in materials science with emphasis on adaptive sampling using uncertainties for targeted design,” npj Computational Materials, vol. 5, 2019. DOI: 10.1038/s41524-019-0153-8
- J. Ling et al., “High-dimensional materials and process optimization using data-driven approaches,” JOM, vol. 69, pp. 768–776, 2017. DOI: 10.1007/s40192-017-0098-z
- S. Lundberg and S.I. Lee, “A Unified Approach to Interpreting Model Predictions,” in Advances in Neural Information Processing Systems, vol. 30, 2017. [Online]. Available: https://proceedings.neurips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
- M. T. Ribeiro, S. Singh, and C. Guestrin, “Why should I trust you?”: Explaining the predictions of any classifier,” in Proc. of the 22nd ACM SIGKDD, pp. 1135–1144, 2016. DOI: 10.1145/2939672.2939778
- M. Wu, Z. Li, B. Gault, P. Munroe and I. Baker, “The effects of carbon on the phase stability and mechanical properties of heat-treated FeNiMnCrAl high entropy alloys,” Materials Science and Engineering: A, vol. 748, pp. 59-73, 2019. DOI: 10.1016/j.msea.2019.01.083.
- F.A. Fortin et al., “DEAP: Evolutionary Algorithms Made Easy,” Journal of Machine Learning Research, vol. 13, pp. 2171–2175, 2012. [Online]. Available: https://www.jmlr.org/papers/volume13/fortin12a/fortin12a.pdf
- Y. Cheng, L. Wang, Z. Dong, Z. Zheng, and Z. Xia, “RF-NSGA-II framework for inverse design of high-performance Mg-Gd-based magnesium alloys,” Journal of Materials Informatics, vol. 5, 53, 2025. DOI:10.20517/jmi.2025.61
- R. Mukherjee and S. Datta, “Design of biodegradable magnesium alloy using bi-objective genetic programming and multi-objective genetic algorithm in tandem,” Journal of Materials Engineering and Performance, Springer, 2025. DOI: 10.1007/s11665-025-11885-0
- K. AlHammad, M. Medraj, and M. Tembely, “Application of machine learning for predicting the incubation period of water droplet erosion in metals,” Discover Applied Sciences, vol. 7, 712, 2025. DOI: 10.1007/s42452-025-07268-8
- M. Mahfouf, M. Jamei, and D. A. Linkens, “Optimal Design of Alloy Steels Using Multiobjective Genetic Algorithms,” Mater. Manuf. Process., vol. 20, no. 3, pp. 553–567, 2005, DOI:10.1081/AMP-200053580
- C. Liu, X. Wang, W. Cai, J. Yang, and H. Su, “Optimal Design of the Austenitic Stainless-Steel Composition Based on Machine Learning and Genetic Algorithm,” Materials, vol. 16, no. 5633, 2023, DOI:10.3390/ma16165633
- M. F. Kilicaslan, Y. Yilmaz, B. Akgul, H. Karatas and C. D. Vurdu, “Effect of Fe–Ni substitution in FeNiSiB soft magnetic alloys produced by melt spinning,” Advances in Materials Science, vol. 21, no. 4, pp. 80–86, 2021. DOI: 10.2478/adms-2021-0026.
- M. Kul, Y. Yilmaz, K. O. Oskay and L. C. Kumruoglu, “Effect of chemical composition of boriding agent on the optimization of surface hardness and layer thickness on AISI 8620 steel by solid and liquid boriding processes,” Advances in Materials Science, vol. 22, no. 3, pp. 1–9, 2022. DOI: 10.2478/adms-2022-0010.
- Y. Uzunoğlu et al., “High-Accuracy Prediction of Mechanical Properties of Ni-Cr-Fe Alloys Using Machine Learning”, ACS, vol. 2, no. 1, pp. 7–14, Jan. 2025, DOI: 10.69882/adba.cs.2025012.
- B. Emin et al., “Investigation of the Impact of Alloying Elements on the Mechanical Properties of Superalloys Using Explainable Artificial Intelligence”, CHF, vol. 2, no. 1, pp. 20–27, Jan. 2025, DOI: 10.69882/adba.chf.2025014.
- Y. Alaca et al., “Investigation of the Effect of Alloying Elements on the Density of Titanium-Based Biomedical Materials Using Explainable Artificial Intelligence”, CEM, vol. 2, no. 1, pp. 15–19, Jan. 2025, DOI: 10.69882/adba.cem.2025013.
- Y. Uzunoğlu and Y. Alaca, “Inverse Prediction of the CALPHAD-Modeled Physical Properties of Superalloys Using Explainable Artificial Intelligence and Artificial Neural Networks”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, vol. 14, no. 1, pp. 331–347, 2025, DOI: 10.17798/bitlisfen.1586564.
- Y. Uzunoǧlu and Y. Alaca, “High-accuracy prediction of the thermo-physical properties of 6xxx series aluminum alloys using explainable artificial intelligence”, International Journal of Computational Materials Science and Engineering, 2025, [Early Access]. DOI: 10.1142/S2047684125500101