References
- Z. Ross, 2023. 3D Printing for Beginners: A Step-by-Step Guide to Getting Started. 3D Printing Book.
- S. Rouf, A. Raina, M. Irfan Ul Haq, N. Naveed, S. Jeganmohan, A. Farzana Kichloo, 2022. 3D printed parts and mechanical properties: Influencing parameters, sustainability aspects, global market scenario, challenges and applications. Advanced Industrial and Engineering Polymer Research, 5(3), 143–158. https://doi.org/10.1016/j.aiepr.2022.02.001
- K. S. Prakash, T. Nancharaih, V. V. S. Rao, 2018. Additive Manufacturing Techniques in Manufacturing - An Overview. Materials Today: Proceedings, 5(2 Pt 1), 3873–3882. https://doi.org/10.1016/j.matpr.2017.11.642
- D. Turney, 2021. History of 3D Printing: It’s Older Than You Think. Autodesk.com. https://www.autodesk.com/design-make/articles/history-of-3d-printing
- N. Rafiq, 2017. 3D Printing: Technology, Applications, and Selection. https://www.taylorfrancis.com/books/mono/10.1201/9781315155494/3dprinting-rafiq-noorani
- S. Muller, E. Westkamper, 2018. Modelling of Production Processes: A Theoretical Approach to Additive Manufacturing. Procedia CIRP, 72, 1524–1529.
- K. Solberg, J. Torgersen, F. Berto, 2020. Fatigue Behaviour of Additively Manufactured Inconel 718 Produced by Selective Laser Melting. Procedia Structural Integrity, 13, 1762–1767.
- Y. Xu, H. Zhang, B. Savija, S.C. Figueiredo, E. Schlangen, 2019. Deformation and fracture of 3D printed disordered lattice materials: Experiments and modeling. Materials and Design, 162, 143–153.
- J. Allum, A. Gleadall, V.V. Silberschmidt, 2020. Fracture of 3D-printed polymers: Crucial role of filament-scale geometric features. Engineering Fracture Mechanics, 224, 106818.
- G. Qian, Z. Jian, X. Pan, F. Berto, 2020. In-situ investigation on fatigue behaviors of Ti-6Al-4V manufactured by selective laser melting. International Journal of Fatigue, 133, 105424.
- O.H. Ezeh, L. Susmel, 2020. On the notch fatigue strength of additively manufactured polylactide (PLA). International Journal of Fatigue, 136, 105583.
- M.R. Khosravani, T. Reinicke, 2020. On the environmental impacts of 3D printing technology. Applied Materials Today, 20, 100689.
- Y. Luo, X. Lin, X. Wan, Z. Wang, P. Huang, 2020. 3D printing of hydrogel scaffolds for future application in photothermal therapy of breast cancer and tissue repair. Acta Biomaterialia, 92, 37–47.
- M.R. Khosravani, T. Reinicke, 2020. Effects of raster layup and printing speed on strength of 3D-printed structural components. Procedia Structural Integrity, 28, 720–725. https://doi.org/10.1016/j.prostr.2020.10.083
- E. Bayas, P. Kumar, K. Deshmukh, 2024. Review of process parameter’s effect on 3D printing. GIS-Zeitschrift für Geoinformatik, 10, 834–845.
- V. Shiva, S.N.R. Vangala, P. Oshin, S. Babu, S. Janbhasha, C. Smitha, P. Kumar, Y. Raju, 2024. Optimization of Manufacturing Parameters of PLA Components Using Taguchi and Neural Network (NN) Technique. Advance Sustainable Science Engineering and Technology, 20, 405–412.
- M. Issametova, N.V. Martyushev, A. Zhastalap, L.B. Sabirova, U. Assemgul, A. Tursynbayeva, G. Abilezova, 2024. Determination of Residual Stresses in 3D-Printed Polymer Parts. Polymers, 16, 2067. https://doi.org/10.3390/polym16142067
- J. Li, S. Yang, D. Li, V. Chalivendra, 2019. Numerical and experimental studies of additively manufactured polymers for enhanced fracture properties. Engineering Fracture Mechanics, 204, 557–569.
- C. Madhav, R. Sri, N. Kesav, Y. Narayan, n.d. Importance and Utilization of 3D Printing in Various Applications.
- M.-H. Hsueh et al., 2021. Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling. Polymers, 13(14), 2387. https://doi.org/10.3390/polym13142387
- K.M. Panchasara, A.N. Ramakrishnan, K. Mehle, C. Ludtka, S. Schwan, 2022. Modeling of Manufacturing Induced Residual Stress in 3D Printed Components. Symp, 403, 2100465.
- Z. Wang, F. Zhao, F. Fuh, L. Lee, 2019. Effect of Porosity on Mechanical Properties of 3D Printed Polymers: Experiments and Micromechanical Modeling Based on X-Ray Computed Tomography Analysis. Polymers, 11(7), 1154. https://doi.org/10.3390/polym11071154
- A.A. Ansari, M. Kamil, 2021. Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 137. https://doi.org/10.1016/j.matpr.2021.02.137
- H. Alzyod, P. Ficzere, 2023. Correlation Between Printing Parameters and Residual Stress in Additive Manufacturing: A Numerical Simulation Approach. Production Engineering Archive, 29, 279–287.
- A.V. Balashov, M.I. Markova, 2019. Study of the structure and properties of products produced by 3D printing. Engineering Bulletin of Don, 1, 5618.
- C. Casavola, A. Cazzato, V. Moramarco, C. Pappalettere, 2016. Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453–458. https://doi.org/10.1016/j.matdes.2015.11.009
- O.A. Mohamed, S.H. Masood, J.L. Bhowmik, 2015. Optimization of fused deposition modelling process parameters: a review of current research and prospects. Advances in Manufacturing, 3(1), 42–53. https://doi.org/10.1007/s40436-014-0097-7
- B.M. Tymrak, M. Kreiger, J.M. Pearce, 2014. Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials & Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
- K.V. Wong, A. Hernandez, 2012. A Review of Additive Manufacturing. ISRN Mechanical Engineering, 2012, 1–10. https://doi.org/10.5402/2012/208760
- H. Tekinalp, V. Kunc, G.M. Vélez-García, C. Duty, L.J. Love, A.K. Naskar, C.A. Blue, S. Ozcan, 2014. Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology, 105, 144–150. https://doi.org/10.1016/j.compscitech.2014.10.009
- D. Hidalgo-Carvajal, A. Muñoz, J.J. Garrido-González, R. Carrasco-Gallego, V. Alcázar, 2023. Recycled PLA for 3D Printing: A Comparison of Recycled PLA Filaments from Waste of Different Origins after Repeated Cycles of Extrusion. Polymers, 15(17), 3651. https://doi.org/10.3390/polym15173651
- N. Ayrilmis, M. Kariz, J.H. Kwon, M. Kitek Kuzman, 2019. Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2195–2200. https://doi.org/10.1007/s00170-019-03299-9
- T. Koslow, 2018. 2019 PLA Filament Guide – All You Need to Know. All3DP, Apr. 17. https://all3dp.com/1/pla-filament-3d-printing/
- A. Locker, 2017. 12 Vital Facts About Food Safe 3D Printing. All3DP, May 20. https://all3dp.com/1/food-safe-3d-printing-abs-pla-food-safe-filament/
- S. Wang, Y. Ma, Z. Deng, S. Zhang, J. Cai, 2020. Effects of fused deposition modeling process parameters on tensile, dynamic mechanical properties of 3D printed polylactic acid materials. Polymer Testing, 86, 106483. https://doi.org/10.1016/j.polymertesting.2020.106483
- S. Saefudin, S. Raharjo, S. Syarifudin, P. Purnomo, M. Rusydi, A. Kuzmin, M. Subri, M. Pujianto, 2025. A Review of Factors Affecting the Mechanical Performance of PLA in FDM 3D Printing. Advance Sustainable Science Engineering and Technology, 7, 0250208. https://doi.org/10.26877/chs1gc62
- J.A. Afonso, J.L. Alves, G. Caldas, B.P. Gouveia, L. Santana, J. Belinha, 2021. Influence of 3D printing process parameters on the mechanical properties and mass of PLA parts and predictive models. Rapid Prototyping Journal, 27(3), 487–495.