Have a personal or library account? Click to login
Centrifugal Gel Casting of Graded Al2O3-Ni Composites Using 2-Carboxyethyl Acrylate Cover

References

  1. Sun M., Ling Z., Mao J., Zeng X., Yuan D., Liu M.: Ammonia-Based Clean Energy Systems: A Review of Recent Progress and Key Challenges. Energies 18 (2025), 2845. https://doi.org/10.3390/en18112845
  2. Abolore R.S., Jaiswal S., Jaiswal A.K.: Green and sustainable pretreatment methods for cellulose extraction from lignocellulosic biomass and its applications: A review. Carbohydrate Polymer Technologies and Applications 7 (2024), 100396. https://doi.org/10.1016/j.carpta.2023.100396.
  3. Gouda A., Merhi N., Hmadeh M., Cecchi T., Santato C., Sain M.: Sustainable strategies for converting organic, electronic, and plastic waste from municipal solid waste into functional materials. Global Challenges 9 (2025), 2400240. https://doi.org/10.1002/gch2.20240024
  4. Angelakis, A. N., Passchier, C. W., Valipour, M., Krasilnikoff, J. A., Tzanakakis, V. A., Ahmed, A. T., Baba, A., Kumar, R., Bilgic, E., Capodaglio, A. G., & Dercas, N. (2023). Evolution of Tunneling Hydro-Technology: From Ancient Times to Present and Future. Hydrology, 10(9), (2023), 190. https://doi.org/10.3390/hydrology10090190
  5. Farh H.M.H., Ben Seghier M.E.A., Zayed T.: A comprehensive review of corrosion protection and control techniques for metallic pipelines. Engineering Failure Analysis 143 (2023), 106885. https://doi.org/10.1016/j.engfailanal.2022.106885.
  6. Velasco D.C.R., Gonçalves V.P.D., Oliveira M.P., Simonassi N.T., Lopes F.P.D., Vieira C.M.F.: Industrial piping system: Design and corrosion protection. Surfaces 8 (2025), 18. https://doi.org/10.3390/surfaces8010018.
  7. Waqar M., Memon A.M., Sabih M., Alhems L.M.: Composite pipelines: Analyzing defects and advancements in non-destructive testing techniques. Engineering Failure Analysis 157 (2024), 107914. https://doi.org/10.1016/j.engfailanal.2023.107914
  8. Ali S., Wang X., Rasool G., Ali A., Ali R., ur-Rehman N., Razzaq I.: Theoretical study of the optical and thermodynamic properties of aluminum oxide (Al₂O₃) with high pressures at elevated temperatures. Modern Physics Letters B 39 (2025), 2350104. https://doi.org/10.1142/S0217984925501040.
  9. Ruys A.: Alumina as a wear-resistant industrial ceramic. In: Ruys A. (Ed.), Alumina Ceramics, Woodhead Publishing Series in Biomaterials, Woodhead Publishing (2019), 369–411. https://doi.org/10.1016/B978-0-08-102442-3.00012-9.
  10. Abyzov A.M.: Aluminum Oxide and Alumina Ceramics (review). Part 1. Properties of Al₂O₃ and Commercial Production of Dispersed Al₂O₃. Refractories and Industrial Ceramics 60 (2019), 24–32. https://doi.org/10.1007/s11148-019-00304-2
  11. [11] Sun Y., Li S., Zhao Q., Cong Z., Xia Y., Jiao X., et al.: Recent Advancements in Alumina-Based High-Temperature Insulating Materials: Properties, Applications, and Future Perspectives. High-Temperature Materials 2 (2025), 10001. 10.70322/htm.2025.10001
  12. Mohammed A.A., Khodair Z.T., Khadom A.A.: Preparation, characterization and application of Al₂O₃ nanoparticles for the protection of boiler steel tubes from high temperature corrosion. Ceramics International 46 (2020), 26945–26955. https://doi.org/10.1016/j.ceramint.2020.07.172
  13. Smallman R.E., Bishop R.J.: Ceramics and glasses. Modern Physical Metallurgy and Materials Engineering, R.E. Smallman, R.J. Bishop, Butterworth-Heinemann, Oxford, 1999, 320–350.
  14. Baudín C.: Alumina, Structure and Properties. Encyclopedia of Materials: Technical Ceramics and Glasses, M. Pomeroy, Elsevier, Amsterdam, 2021, 25–46.
  15. Metson J.: Production of alumina. Fundamentals of Aluminium Metallurgy, R. Lumley, Woodhead Publishing, Cambridge, 2011, 23–48.
  16. Hutsaylyuk V., Student M., Posuvailo V., Student O., Hvozdetskyi V., Maruschak P., Zakiev V.: The role of hydrogen in the formation of oxide-ceramic layers on aluminum alloys during their plasma-electrolytic oxidation. Journal of Materials Research and Technology 14 (2021), 1682–1696. https://doi.org/10.1016/j.jmrt.2021.07.082.
  17. Hutsaylyuk V., Student M., Posuvailo V., Student O., Sirak Y., Hvozdetskyi V., Maruschak P., Veselivska H.: The properties of oxide-ceramic layers with Cu and Ni inclusions synthesizing by PEO method on top of the gas-spraying coatings on aluminium alloys. Vacuum 179 (2020), 109514. https://doi.org/10.1016/j.vacuum.2020.109514.
  18. Zygmuntowicz J., Wiecińska P., Miazga A., Konopka K., Szafran M., Kaszuwara W.: Thermoanalytical studies of the ceramic-metal composites obtained by gel-centrifugal casting. Journal of Thermal Analysis and Calorimetry 133 (2018), 303–312. https://doi.org/10.1007/s10973-017-6647-z
  19. Ruys A.: Processing, structure, and properties of alumina ceramics. In: Ruys A. (Ed.), Alumina Ceramics, Woodhead Publishing Series in Biomaterials, Woodhead Publishing (2019), 71–121. https://doi.org/10.1016/B978-0-08-102442-3.00004-X.
  20. Piza M.M.T., Bergamo E.T.P., Campos T.M.B., Carvalho L.F., Goulart C.A., Gutierres E., Lopes A.C.O., Jalkh E.B.B., Bonfante E.A.: Alumina-toughened zirconia nanocomposite: Aging effect on microstructural, optical, and mechanical properties. Dental Materials 39 (2023), 1022–1031. https://doi.org/10.1016/j.dental.2023.09.005.
  21. Gogotsi G.A.: Fracture toughness of ceramics and ceramic composites. Ceramics International 29 (2003), 777–784. https://doi.org/10.1016/S0272-8842(02)00230-4
  22. Rashid A.B., Haque M., Islam S.M.M., Labib U., Rafi K.M., Chowdhury P.: Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects. Advances in Materials Science and Engineering (2024), 2112358. https://doi.org/10.1155/2024/2112358
  23. Kota N., Charan M.S., Laha T., Roy S.: Review on development of metal/ceramic interpenetrating phase composites and critical analysis of their properties. Ceramics International 48 (2022), 1451–1483. https://doi.org/10.1016/j.ceramint.2021.09.232
  24. Faber K.T.: Ceramics: Microstructural Toughening (Excluding Transformation Toughening, Whisker Toughening, and Continuous Fiber Toughening). Encyclopedia of Materials: Science and Technology, K.H.J. Buschow et al., Elsevier, Amsterdam, 2001, 1108–1112.
  25. Van Mier J.G.M.: Concrete: Failure Mechanics. Encyclopedia of Materials: Science and Technology, K.H.J. Buschow et al., Elsevier, Amsterdam, 2001, 1479–1482.
  26. Silva R.F., Coelho P.G., Gustavo C.V., Almeida C.J., Farias F.W.C., Duarte V.R., Xavier J., Esteves M.B., Conde F.M., Cunha F.G., et al.: Functionally graded materials and structures: Unified approach by optimal design, metal additive manufacturing, and image-based characterization. Materials 17 (2024), 4545. https://doi.org/10.3390/ma17184545.
  27. Aboudi J., Pindera M.-J., Arnold S.M.: Higher-order theory for functionally graded materials. Composites Part B: Engineering 30 (1999), 777–832. https://doi.org/10.1016/S1359-8368(99)00053-0.
  28. Li Y., Feng Z., Hao L., Huang L., Xin C., Wang Y., Bilotti E., Essa K., Zhang H., Li Z., Yan F., Peijs T.: A review on functionally graded materials and structures via additive manufacturing: From multi-scale design to versatile functional properties. Advanced Materials Technologies 5 (2020), 1900981. https://doi.org/10.1002/admt.201900981.
  29. Saleh B., Jiang J., Fathi R., Al-hababi T., Xu Q., Wang L., Song D., Ma A.: 30 Years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering 201 (2020), 108376. https://doi.org/10.1016/j.compositesb.2020.108376.
  30. Sharma N.K., Bhandari M.: Applications of functionally graded materials (FGMs). International Journal of Engineering Research & Technology (IJERT) 2 (2014), 2.
  31. Silva R.F., Coelho P.G., Gustavo C.V., Almeida C.J., Farias F.W.C., Duarte V.R., Xavier J., Esteves M.B., Conde F.M., Cunha F.G., Santos T.G.: Functionally Graded Materials and Structures: Unified Approach by Optimal Design, Metal Additive Manufacturing, and Image-Based Characterization. Materials 17 (2024), 4545. https://doi.org/10.3390/ma17184545
  32. Mohammadi M., Rajabi M., Ghadiri M.: Functionally graded materials (FGMs): A review of classifications, fabrication methods and their applications. Processing and Application of Ceramics 15 (2021), 319–343. 10.2298/PAC2104319M
  33. Zygmuntowicz J., Wiecińska P., Miazga A., Konopka K., Kaszuwara W.: Al₂O₃/Ni functionally graded materials (FGM) obtained by centrifugal-slip casting method. Journal of Thermal Analysis and Calorimetry 130 (2017), 123–130. https://doi.org/10.1007/s10973-017-6232-5
  34. Kausar A.: Progress in Polymer Nanocomposites for High-Performance Applications. Polymer-Plastics Technology and Materials 62 (2023), 453–472.
  35. EN 623–2: Advanced technical ceramics – Determination of density and porosity, 1993.
  36. Kurzydłowski K.J., Ralph B.: The Quantitative Description of the Microstructure of Materials. CRC Press, Boca Raton, 1995.
  37. Wejrzanowski T., Spychalski W., Rożniatowski K., Kurzydłowski K.J.: Image based analysis of complex microstructures of engineering materials. International Journal of Applied Mathematics and Computer Science 18 (2008), 33–39. 10.2478/v10006-008-0003-1
  38. Michalski J., Wejrzanowski T., Pielaszek R., Konopka K., Łojkowski W., Kurzydłowski K.J.: Application of image analysis for characterization of powders. Materials Science-Poland 23 (2005), 79–86.
  39. Wejrzanowski T., Kurzydłowski K.J.: Stereology of grains in nano-crystals. Solid State Phenomena 94 (2003), 221–228. 10.4028/www.scientific.net/SSP.94.221
  40. Pietrzak E., Wiecińska P., Szafran M.: 2-carboxyethyl acrylate as a new monomer preventing negative effect of oxygen inhibition in gelcasting of alumina. Ceramics International 42 (2016), 13682–13688. https://doi.org/10.1016/j.ceramint.2016.05.166
  41. Zygmuntowicz, J., Kosiorek, M., Piotrkiewicz, P., Wachowski, M., Szachogłuchowicz, I., Kaszuwara, W., Konopka, K., Falkowski, P., & Piątek, M.: Gradient composites Al₂O₃–Ni obtained via the CSC technique in a magnetic field. Journal of Alloys and Compounds. Advance 1008 (2024), 176532. https://doi.org/10.1016/j.jallcom.2024.176532.
  42. González C., Segurado J., Llorca J.: Numerical simulation of elasto-plastic deformation of composites: evolution of stress microfields and implications for homogenization models, Journal of the Mechanics and Physics of Solids, 52, 7, (2004), 1573-1593, https://doi.org/10.1016/j.jmps.2004.01.002.
  43. Wu, H., Xu, W., Shan, D., Wang, X., Guo, B., Jin, B.C.: Micromechanical modeling of damage evolution and fracture behavior in particle reinforced metal matrix composites based- on the conventional theory of mechanism-based strain gradient plasticity. J. Mater. Res. Technol. 22, (2023) 625–641.
  44. Périé J.-N., Passieux J.-Ch.: Advances in Digital Image Correlation (DIC). Applied Sciences, 2020. 10.3390/books978-3-03928-515-0!!!x002E;
DOI: https://doi.org/10.2478/adms-2025-0017 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 85 - 103
Submitted on: Jun 16, 2025
Accepted on: Sep 6, 2025
Published on: Sep 26, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Justyna Zygmuntowicz, Joanna Tańska, Paulina Wiecińska, Paulina Piotrkiewicz, Katarzyna Konopka, Mikołaj Szafran, Marcin Wachowski, Ireneusz Szachogłuchowicz, Bartosz Michalski, Waldemar Kaszuwara, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.