Have a personal or library account? Click to login
The Role of Lead in the Machinability of Copper Alloys Used for Drinking Water Installations Cover

The Role of Lead in the Machinability of Copper Alloys Used for Drinking Water Installations

Open Access
|Sep 2025

References

  1. Garcia P., Rivera S., Palacios M., Belzunce J., Comparative study of the parameters influencing the machinability of leaded brasses. Engineering Failure Analysis 17, 2010, 771–776.
  2. Nobel C., Klocke F., Lung D., Wolf S., Machinability enhancement of lead-free brass alloys. Procedia CIRP2014, 14, 95–100.
  3. Toulfatzis A. I., Pantazopoulos G. A., David C. N., Sagris D. S., Paipetis A. S., Final Heat Treatment as a Possible Solution for the Improvement of Machinability of Pb-Free Brass Alloys. Metals 8, 2018, 8, 575.
  4. Vazdirvanidis A., Rikos A., Toulfatzis A., & Pantazopoulos G., Electron Backscatter Diffraction (EBSD) Analysis of Machinable Lead-Free Brass Alloys. Connecting Texture with Fracture. Metals 12, 2022, 569.
  5. Davis J.R., Wrought Copper and Copper Alloys. ASM Specialty Handbook: Copper and Copper Alloys, ASM International, USA, 2001, 54.
  6. Martyushev N., Leaded-tin bronze destruction mechanism. 2012 7th International Forum on Strategic Technology (IFOST), Tomsk, Russia, 2012, 1-4.
  7. Maruyama T., Abé H., Hirose K., Matsubayashi R., Kobayashi T., Influence of Alloying Elements on Sulfide Formation in Lead Free Bronze Castings with Dispersed Sulfide Particles. Materials Transactions 53, 2012, 380-384.
  8. Johansson J., Alm P., M’Saoubi R., Malmberg P., Ståhl J., Bushlya V., On the function of lead (Pb) in machining brass alloys. The International Journal of Advanced Manufacturing Technology 120, 2022, 7263 – 7275.
  9. Amaral L., Quinta R., Silva T., Soares R., Castellanos S., Jesus A., Effect of lead on the machinability of brass alloys using polycrystalline diamond cutting tools. The Journal of Strain Analysis for Engineering Design 53, 2018, 602 - 615.
  10. Srivatsan T., Sudarshan T., The high strain fatigue behavior of lead-containing copper alloys. Engineering Fracture Mechanics 50, 1995, 85-101.
  11. Pathak J., Tiwari, S., On the mechanical and wear properties of copper-lead bearing alloys. Wear 155, 1992, 37-47.
  12. Stavroulakis P., Toulfatzis A., Pantazopoulos G., Paipetis A., Machinable Leaded and Eco-Friendly Brass Alloys for High Performance Manufacturing Processes: A Critical Review. Metals 2022, 12, 246.
  13. Imai H., Kosaka Y., Kojima A., Li S., Kondoh K., Umeda J., Atsumi H., Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite. Powder Technology 198, 2010, 417-421.
  14. Taha M., El-Mahallawy N., Hammouda R., Moussa T., Gheith M., Machinability characteristics of lead free-silicon brass alloys as correlated with microstructure and mechanical properties. Ain Shams Engineering Journal 3, 2012, 383-392.
  15. Schultheiss F., Johansson D., Bushlya V., Zhou J., Nilsson K., Ståhl J., Comparative study on the machinability of lead-free brass. Journal of Cleaner Production 149, 2017, 366-377.
  16. Johansson J., Persson H., Ståhl J., Zhou J., Bushlya V., Schultheiss, F., Machinability Evaluation of Low-Lead Brass Alloys. Procedia Manufacturing 38, 2019, 1723-1730.
  17. Schultheiss F., Windmark C., Sjöstrand S., Rasmusson M., Ståhl, J., Machinability and manufacturing cost in low-lead brass. The International Journal of Advanced Manufacturing Technology 99, 2018, 2101 - 2110.
  18. Brans K, Kind S, Meurer M, Bergs T., Influence of the Material Production Route on the Material Properties and the Machinability of the Lead-Free Copper-Zinc-Alloy CuZn40 (CW509L). Metals 14, 2024, 747.
  19. CNC Machining Material Machinability Chart – Machinability of Metals and Plastics, online: CNC Machining Material Machinability Chart - Machinability of Metals and Plastics | CNCLATHING, 10.06.2023.
  20. Recommended machining parameters for copper and copper alloys, German Copper Institut (DKI), Monograph i.18.
  21. Zachert C., Brans K., Schraknepper D., Bergs T., Assessment and Comparison of the Machinability of Innovative Copper Alloys. Conference Proceedings Copper Alloys 2022, Düsseldorf, 22. - 23. November 2022, 56-59.
  22. Taha M. A., El-Mahallawy N. A., Gheith M. H., Hamouda R. M., Moussa T. M., Machinability of a new group of lead-free brass alloys developed for fittings and faucets. ResearchGate, January 2007.
  23. https://www.secotools.com/dashboard/Suggest/Suggest, online: 10.06.2023
  24. PN-EN ISO 1302:2004. Specyfikacje geometrii wyrobów (GPS). Oznaczanie struktury geometrycznej powierzchni w dokumentacji technicznej wyrobu.
  25. Schultheiss F., Johansson D., Linde M., Tam P. L., Bushlya V., Zhou J., Nyborg L. & Ståhl J.-E., Machinability of CuZn21Si3P brass. Materials Science and Technology 32, 2016, 17, 1744-1750.
DOI: https://doi.org/10.2478/adms-2025-0015 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 53 - 66
Submitted on: May 7, 2025
Accepted on: Sep 9, 2025
Published on: Sep 26, 2025
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Janusz Krawczyk, Philipp Skoda, Agnieszka Chaczyk, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.