References
- B. Makurat-Kasprolewicz, A. Ossowska, Recent advances in electrochemically surface treated titanium and its alloys for biomedical applications: A review of anodic and plasma electrolytic oxidation methods, Mater Today Commun 34 (2023) 105425. https://doi.org/10.1016/j.mtcomm.2023.105425.
- D.B. Kwidzińska, M. Jażdżewska, D. Fydrych, The influence of selected metal oxides and laser modification on the surfaces of titanium alloys – Bibliometric and systematic review, Opt Laser Technol 184 (2025) 1 – 18. https://doi.org/10.1016/j.optlastec.2025.112592.
- M. Jażdżewska, M. Bartmański, Nanotubular oxide layer formed on helix surfaces of dental screw implants, Coatings 11 (2021) 1–10. https://doi.org/10.3390/coatings11020115.
- G. Li, F. Ma, P. Liu, S. Qi, W. Li, K. Zhang, X. Chen, Review of micro-arc oxidation of titanium alloys: Mechanism, properties and applications, J Alloys Compd 948 (2023) 169773. https://doi.org/10.1016/j.jallcom.2023.169773.
- Y. Fei, W. Yang, Z. Guo, H. Sun, F. Yang, J. Hu, Study of cell adhesion, osteogenesis, and angiogenesis of a “groove” structure micro-arc oxidation titanium, Applied Surface Science Advances 19 (2024) 100552. https://doi.org/10.1016/j.apsadv.2023.100552.
- Ł. Maj, F. Muhaffel, A. Jarzębska, A. Trelka, K. Balin, M. Bieda, H. Cimenoglu, Unveiling the mechanisms of coating formation during micro-arc oxidation of titanium in Na2HPO4 electrolyte, Surf Coat Technol 476 (2024) 130224. https://doi.org/10.1016/j.surfcoat.2023.130224.
- Ł. Maj, D. Wojtas, A. Jarzębska, M. Bieda, K. Trembecka-Wójciga, R. Chulist, W. Kozioł, A. Góral, A. Trelka, K. Janus, J. Kawałko, M. Kulczyk, F. Muhaffel, H. Çimenoğlu, K. Sztwiertnia, Titania coating formation on hydrostatically extruded pure titanium by micro-arc oxidation method, J Mater Sci Technol 111 (2022) 224–235. https://doi.org/10.1016/j.jmst.2021.09.019.
- Z.Q. Yao, Y. Ivanisenko, T. Diemant, A. Caron, A. Chuvilin, J.Z. Jiang, R.Z. Valiev, M. Qi, H.J. Fecht, Synthesis and properties of hydroxyapatite-containing porous titania coating on ultrafine-grained titanium by micro-arc oxidation, Acta Biomater 6 (2010) 2816–2825. https://doi.org/10.1016/j.actbio.2009.12.053.
- P.A. Pesode, S.B. Barve, Recent advances on the antibacterial coating on titanium implant by micro-arc oxidation process, in: Mater Today Proc 47 (16) 2021 5652–5662. https://doi.org/10.1016/j.matpr.2021.03.702.
- Z.Y. Zhang, T.Y. Huang, D.J. Zhai, H.B. Wang, K.Q. Feng, L. Xiang, Study on Zn-doped antibacterial bioactive coatings on Ti6Al4V titanium alloy surfaces by micro-arc oxidation, Surf Coat Technol 467 (2023) 129724. https://doi.org/10.1016/j.surfcoat.2023.129724.
- L. Liu, F. Ma, P. Liu, S. Qi, W. Li, K. Zhang, X. Chen, Preparation and antibacterial properties of ZnSr-doped micro-arc oxidation coatings on titanium, Surf Coat Technol 462 (2023) 129469. https://doi.org/10.1016/j.surfcoat.2023.129469.
- S. Liu, C. Xia, Z. Liu, J. Ma, Y. Hu, H. Wang, C. Liang, L. Yang, H. Zhou, Micro-arc oxidation preparation of a ZnO-Se composite coating on titanium with anti-oxidation and anti-bacterial potentials for osteomyelitis control, Mater Lett 327 (2022) 132978. https://doi.org/10.1016/j.matlet.2022.132978.
- J. Yang, K. Fang, K. Xu, X. Shen, X. Xu, Effect of zinc or copper doping on corrosion resistance and anti-oxidative stress of strontium-based micro-arc oxidation coatings on titanium, Appl Surf Sci 626 (2023) 157229. https://doi.org/10.1016/j.apsusc.2023.157229.
- Z.Y. Zhang, T.Y. Huang, D.J. Zhai, H.B. Wang, K.Q. Feng, L. Xiang, Study on strontium doped bioactive coatings on titanium alloys surfaces by micro-arc oxidation, Surf Coat Technol 451 (2022) 129045. https://doi.org/10.1016/j.surfcoat.2022.129045.
- X. Shen, K. Fang, K.H. Ru Yie, Z. Zhou, Y. Shen, S. Wu, Y. Zhu, Z. Deng, P. Ma, J. Ma, J. Liu, High proportion strontium-doped micro-arc oxidation coatings enhance early osseointegration of titanium in osteoporosis by anti-oxidative stress pathway, Bioact Mater 10 (2022) 405–419. https://doi.org/10.1016/j.bioactmat.2021.08.031.
- X. Yao, X. Zhang, H. Wu, L. Tian, Y. Ma, B. Tang, Microstructure and antibacterial properties of Cu-doped TiO 2 coating on titanium by micro-arc oxidation, Appl Surf Sci 292 (2014) 944–947. https://doi.org/10.1016/j.apsusc.2013.12.083.
- J. Tang, F. Wei, L. Zhao, L. Yang, J. Li, Z. Sun, C. Yang, W. Zhang, B. Liu, Superior antibacterial properties of copper-doped titanium oxide films prepared by micro-arc oxidation, Ceram Int 50 (2024) 1370–1378. https://doi.org/10.1016/j.ceramint.2023.10.225.
- H. Li, H. Yu, C. Chen, W. Zhong, Effect of graphene oxide on corrosion resistance and biological activity of micro arc oxidation ceramic layer on titanium alloy, Mater Lett 327 (2022) 133056. https://doi.org/10.1016/j.matlet.2022.133056.
- B. Tekin, S. Dundar, S. Tekin, E. Emine Sukuroglu, Z. Khurshid, Y. Ezgi, F. Demirci, M. Faheemuddin, Effect of micro-arc oxidation coatings with graphene oxide and graphite on osseointegration of titanium implants-an in vivo study, Saudi Dental Journal 36 (2024) 591–595. https://doi.org/10.1016/j.sdentj.2024.01.013.
- F. Wang, X. Wang, E. Xie, Q. Gan, S. Ping, J. Wei, F. Li, Z. Wang, Simultaneous incorporation of gallium oxide and tantalum microparticles into micro-arc oxidation coating of titanium possessing antibacterial effect and stimulating cellular response, Biomaterials Advances 135 (2022) 212736. https://doi.org/10.1016/j.bioadv.2022.212736.
- L. Guo, C. Gao, F. Wang, J. Wei, J. Hu, Y. Xu, Influence of content of silicon nitride nanoparticles into micro-arc oxidation coating of titanium on bactericidal capability and osteoblastic differentiation, Surf Coat Technol 458 (2023) 129346. https://doi.org/10.1016/j.surfcoat.2023.129346.
- Y. Zhu, Y. Shen, Y. Xiang, K. Fang, K. Xu, P. Ma, C. Cai, J. Ma, X. Shen, Combined application of silica particles and zirconium hydrogen phosphate coating to improve the friction resistance and osteogenic/anti-inflammatory properties of micro-arc oxidation-treated titanium, Surf Coat Technol 451 (2022) 129037. https://doi.org/10.1016/j.surfcoat.2022.129037.
- M.S. Kim, J.J. Ryu, Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem Commun 9 (2007) 1886–1891. https://doi.org/10.1016/j.elecom.2007.04.023.
- Y. Bai, I.S. Park, S.J. Lee, T.S. Bae, W. Duncan, M. Swain, M.H. Lee, One-step approach for hydroxyapatite-incorporated TiO 2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition, Appl Surf Sci 257 (2011) 7010–7018. https://doi.org/10.1016/j.apsusc.2011.03.058.
- T.H. Qaid, S. Ramesh, F. Yusof, W.J. Basirun, Y.C. Ching, H. Chandran, S. Krishnasamy, Micro-arc oxidation of bioceramic coatings containing eggshell-derived hydroxyapatite on titanium substrate, Ceram Int 45 (2019) 18371–18381. https://doi.org/10.1016/j.ceramint.2019.06.052.
- S.S. Nisar, H.C. Choe, Plasma electrolytic oxidation coatings on mechanically cold-worked titanium in solution containing hydroxyapatite ions, Surf Coat Technol 479 (2024) 130524. https://doi.org/10.1016/j.surfcoat.2024.130524.
- W. Jing, M. Zhang, L. Jin, J. Zhao, Q. Gao, M. Ren, Q. Fan, Assessment of osteoinduction using a porous hydroxyapatite coating prepared by micro-arc oxidation on a new titanium alloy, International Journal of Surgery 24 (2015) 51–56. https://doi.org/10.1016/j.ijsu.2015.08.030.
- R. Luo, Z. Liu, F. Yan, Y. Kong, Y. Zhang, The biocompatibility of hydroxyapatite film deposition on micro-arc oxidation Ti6Al4V alloy, Appl Surf Sci 266 (2013) 57–61. https://doi.org/10.1016/j.apsusc.2012.11.074.
- A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Vangolu, O. Bayrak, I. Karaman, A. Celik, Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment, Surf Coat Technol 205 (2011) S537 – S542. https://doi.org/10.1016/j.surfcoat.2011.03.032.
- X. Nie, A. Leyland, A. Matthews, Deposition of layered bioceramic hydroxyapatite/TiO 2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis, Surf Coat Technol 125 (1) (2000) 407-414. https://doi.org/10.1016/S0257-8972(99)00612-X
- K. Ju, Z. Zhao, X. Chen, X. Liu, J. Li, Preparation and growth behaviours of low porosity hydroxyapatite with enhanced adhesion by electrochemical deposition on micro-arc oxide coatings, Surf Coat Technol 473 (2023) 130017. https://doi.org/10.1016/j.surfcoat.2023.130017.
- K. Ju, X. Chen, Z. Zhao, Fabrication of Ti/TiO2(Ca)/hydroxyapatite bioceramic material by micro-arc oxidation and electrochemical deposition, Ceram Int 48 (2022) 19937–19943. https://doi.org/10.1016/j.ceramint.2022.03.268.
- N. Al-Harbi, M.A. Hussein, Y. Al-Hadeethi, R.I. Felimban, H.H. Tayeb, N.M.H. Bedaiwi, A.M. Alosaimi, E. Bekyarova, M. Chen, Bioactive hybrid membrane-based cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes nanocomposite for dental applications, J Mech Behav Biomed Mater 141 (2023) 105795. https://doi.org/10.1016/j.jmbbm.2023.105795.
- B.I. Kharisov, O. V. Kharissova, L.T. González, Y.P. Méndez, I.E. Uflyand, I. Gómez de la Fuente, Hydroxyapatite composites with carbon allotropes: Preparation, properties, and applications, Particuology 88 (2024) 239–265. https://doi.org/10.1016/j.partic.2023.09.012.
- K. Balani, R. Anderson, T. Laha, M. Andara, J. Tercero, E. Crumpler, A. Agarwal, Plasma-sprayed carbon nanotube reinforced hydroxyapatite coatings and their interaction with human osteoblasts in vitro, Biomaterials 28 (2007) 618–624. https://doi.org/10.1016/j.biomaterials.2006.09.013.
- J.E. Tercero, S. Namin, D. Lahiri, K. Balani, N. Tsoukias, A. Agarwal, Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating’s mechanical properties and biocompatibility, Materials Science and Engineering C 29 (2009) 2195–2202. https://doi.org/10.1016/j.msec.2009.05.001.
- L.L. Zhang, H.J. Li, X.N. Zhao, Q. Song, J.H. Lu, S. Cao, W.F. Cao, B. Wang, In situ grown carbon nanotubes on carbon fibres and their effect on deposition of hydroxyapatite coating, Materials Technology 29 (2014) 193–197. https://doi.org/10.1179/1753555713Y.0000000077.
- M. Chen, H. Zhang, S. Shan, Y. Li, X. Li, D. Peng, Fabrication of multiwalled carbon nanotubes/carrageenan-chitosan@ Ce and Sr substituted hydroxyapatite biocomposite coating on titanium: In vivo bone formation evaluations, J King Saud Univ Sci 32 (2020) 1175–1181. https://doi.org/10.1016/j.jksus.2019.11.006.
- A. Demirel, E. Yılmaz, S. Türk, F. Çalışkan, Preparation and investigation of porous chitosan/carbon nanotube biocomposite coating by space holder method, Diam Relat Mater 138 (2023) 110217. https://doi.org/10.1016/j.diamond.2023.110217.
- K. Balani, Y. Chen, S.P. Harimkar, N.B. Dahotre, A. Agarwal, Tribological behavior of plasma-sprayed carbon nanotube-reinforced hydroxyapatite coating in physiological solution, Acta Biomater 3 (2007) 944–951. https://doi.org/10.1016/j.actbio.2007.06.001.
- S. Liu, H. Li, Y. Su, Q. Guo, L. Zhang, Preparation and properties of in-situ growth of carbon nanotubes reinforced hydroxyapatite coating for carbon/carbon composites, Materials Science and Engineering C 70 (2017) 805–811. https://doi.org/10.1016/j.msec.2016.09.060.
- A. Abrishamchian, T. Hooshmand, M. Mohammadi, F. Najafi, Preparation and characterization of multi-walled carbon nanotube/hydroxyapatite nanocomposite film dip coated on Ti-6Al-4V by sol-gel method for biomedical applications: An in vitro study, Materials Science and Engineering C 33 (2013) 2002–2010. https://doi.org/10.1016/j.msec.2013.01.014.
- Z. Albaraqaawee, S.A. Abdulsada, A.I. Al-Mosawi, Analysis of coated samples containing hydroxyapatite/multiwalled carbon nanotubes on 2205 DSS substrate, Fullerenes Nanotubes and Carbon Nanostructures 32 (2024) 603–610. https://doi.org/10.1080/1536383X.2024.2309943.
- S. Singh, A. Kumar, M. Kamboj, B. Das, K. Rakha, H. Singh, Corrosion behaviour of plasma-sprayed baghdadite bioceramic coatings reinforced with carbon nanotubes, J Alloys Compd 976 (2024) 173094. https://doi.org/10.1016/j.jallcom.2023.173094.
- N. Horandghadim, Y. Ghazanfar-Ahari, J. Khalil-Allafi, Multiwalled-carbon nanotubes reinforced hydroxyapatite- tantalum pentoxide nanocomposite coating on Nitinol alloy: Antibacterial activity and Electrochemical properties, Surfaces and Interfaces 29 (2022) 101773. https://doi.org/10.1016/j.surfin.2022.101773.
- H. Maleki-Ghaleh, J. Khalil-Allafi, Characterization, mechanical and in vitro biological behavior of hydroxyapatite-titanium-carbon nanotube composite coatings deposited on NiTi alloy by electrophoretic deposition, Surf Coat Technol 363 (2019) 179–190. https://doi.org/10.1016/j.surfcoat.2019.02.029.
- L. Nematzadeh, N. Horandghadim, V. Khalili, J. Khalil-Allafi, In Vitro Biological Characterization of Natural Hydroxyapatite/Single-Walled Carbon Nanotube Composite Coatings Synthesized by Electrophoretic Deposition on NiTi Shape Memory Alloy, J Mater Eng Perform 29 (2020) 6170–6180. https://doi.org/10.1007/s11665-020-05094-0.
- D. Sivaraj, K. Vijayalakshmi, Novel synthesis of bioactive hydroxyapatite/f-multiwalled carbon nanotube composite coating on 316L SS implant for substantial corrosion resistance and antibacterial activity, J Alloys Compd 777 (2019) 1340–1346. https://doi.org/10.1016/j.jallcom.2018.10.341.
- D. Sivaraj, K. Vijayalakshmi, Enhanced antibacterial and corrosion resistance properties of Ag substituted hydroxyapatite/functionalized multiwall carbon nanotube nanocomposite coating on 316L stainless steel for biomedical application, Ultrason Sonochem 59 (2019) 104730. https://doi.org/10.1016/j.ultsonch.2019.104730.
- S. Arul Xavier, U. Vijayalakshmi, Electrochemically grown functionalized -Multi-walled carbon nanotubes/hydroxyapatite hybrids on surgical grade 316L SS with enhanced corrosion resistance and bioactivity, Colloids Surf B Biointerfaces 171 (2018) 186–196. https://doi.org/10.1016/j.colsurfb.2018.06.058.
- S. Hassan, A.Y. Nadeem, H. Qaiser, A.S. Kashif, A. Ahmed, K. Khan, A. Altaf, A review of carbon-based materials and their coating techniques for biomedical implants applications, Carbon Letters 33 (2023) 1171–1188. https://doi.org/10.1007/s42823-023-00496-1.
- N. Horandghadim, Y. Ghazanfar-Ahari, J. Khalil-Allafi, Multiwalled-carbon nanotubes reinforced hydroxyapatite- tantalum pentoxide nanocomposite coating on Nitinol alloy: Antibacterial activity and Electrochemical properties, Surfaces and Interfaces 29 (2022) 101773. https://doi.org/10.1016/j.surfin.2022.101773.
- L. Singh, P.K. Singh, V. Singh, Synthesis and characterization of carbon nanotube reinforced hydroxyapatite ceramics proposed for biomedical applications, Mater Today Proc 60 (2) (2022) 1150–1155. https://doi.org/10.1016/j.matpr.2022.02.529.
- J. Sypniewska, M. Szkodo, B. Majkowska-Marzec, Ł. Pawłowski, A. Mirowska, J. Ryl, A. Mielewczyk-Gryń, Ł. Gaweł, E.M. Campos, J.P. Fernández Hernán, Hybrid laser-micro-arc oxidation techniques for enhanced biocompatibility and surface modification of Ti13Nb13Zr alloy in biomedical applications, Appl Surf Sci 698 (2025) 163136. https://doi.org/10.1016/j.apsusc.2025.163136.
- M.S. Kim, J.J. Ryu, Y.M. Sung, One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation, Electrochem Commun 9 (2007) 1886–1891. https://doi.org/10.1016/j.elecom.2007.04.023.
- Y. Bai, I.S. Park, S.J. Lee, T.S. Bae, W. Duncan, M. Swain, M.H. Lee, One-step approach for hydroxyapatite-incorporated TiO 2 coating on titanium via a combined technique of micro-arc oxidation and electrophoretic deposition, Appl Surf Sci 257 (2011) 7010–7018. https://doi.org/10.1016/j.apsusc.2011.03.058.
- Y. Bai, K.A. Kim, I.S. Park, S.J. Lee, T.S. Bae, M.H. Lee, In situ composite coating of titaniahydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing, Materials Science and Engineering: B 176 (2011) 1213–1221. https://doi.org/10.1016/j.mseb.2011.06.019.
- K. Ju, Z. Zhao, X. Chen, X. Liu, J. Li, Preparation and growth behaviours of low porosity hydroxyapatite with enhanced adhesion by electrochemical deposition on micro-arc oxide coatings, Surf Coat Technol 473 (2023) 130017. https://doi.org/10.1016/j.surfcoat.2023.130017.
- K. Ju, X. Chen, Z. Zhao, Fabrication of Ti/TiO2(Ca)/hydroxyapatite bioceramic material by micro-arc oxidation and electrochemical deposition, Ceram Int 48 (2022) 19937–19943. https://doi.org/10.1016/j.ceramint.2022.03.268.
- Y. Bai, K.A. Kim, I.S. Park, S.J. Lee, T.S. Bae, M.H. Lee, In situ composite coating of titaniahydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing, Materials Science and Engineering: B 176 (2011) 1213–1221. https://doi.org/10.1016/j.mseb.2011.06.019.
- A. Ładniak, M. Jurak, A.E. Wiącek, Physicochemical characteristics of chitosan-TiO2 biomaterial. 2. Wettability and biocompatibility, Colloids Surf A Physicochem Eng Asp 630 (2021) 127546. https://doi.org/10.1016/j.colsurfa.2021.127546.
- K.L. Menzies, L. Jones, The impact of contact angle on the biocompatibility of biomaterials, Optometry and Vision Sci. 87 (2010) 387–399. https://doi.org/10.1097/OPX.0b013e3181da863e.
- Y. Li, Y. Yang, Y. Qing, R. Li, X. Tang, D. Guo, Y. Qin, Enhancing zno-np antibacterial and osteogenesis properties in orthopedic applications: A review, Int J Nanomedicine 15 (2020) 6247–6262. https://doi.org/10.2147/IJN.S262876.