References
- Benedetti, M., Du Plessis, A., Ritchie, R., Dallago, M., Razavi, N., & Berto, F. (2021). Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering R Reports, 144, 100606. https://doi.org/10.1016/j.mser.2021.100606
- Yavas, D., Liu, Q., Zhang, Z., & Wu, D. (2022). Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption. Materials & Design, 217, 110613. https://doi.org/10.1016/j.matdes.2022.110613
- Mohammadi, A., Hajizadeh, E., Tan, Y., Choong, P., & Oetomo, D. (2023). A bioinspired 3D-printable flexure joint with cellular mechanical metamaterial architecture for soft robotic hands. International Journal of Bioprinting, 9(3), 696. https://doi.org/10.18063/ijb.696
- Zheng, X., Chen, T., Jiang, X., Naito, M., & Watanabe, I. (2022). Deep-learning-based inverse design of three-dimensional architected cellular materials with the target porosity and stiffness using voxelized Voronoi lattices. Science and Technology of Advanced Materials, 24(1). https://doi.org/10.1080/14686996.2022.2157682
- Cadoret, N., Chaves-Jacob, J., & Linares, J. (2023). Structural additive manufacturing parts bio-inspired from trabecular bone form-function relationship. Materials & Design, 231, 112029. https://doi.org/10.1016/j.matdes.2023.112029
- Kamranfard, M. R., Darijani, H., Rokhgireh, H., & Khademzadeh, S. (2022). Analysis and optimization of strut-based lattice structures by simplified finite element method. Acta Mechanica, 234(4), 1381–1408. https://doi.org/10.1007/s00707-022-03443-9
- Ansari, A. I., Sheikh, N. A., & Kumar, N. (2023). Energy-Absorbing Characteristics of an ABSM30i-based 3D-Printed Periodic Surface and Strut-Based Lattice Structure. Journal of the Institution of Engineers (India) Series C, 104(5), 989–1004. https://doi.org/10.1007/s40032-023-00984-3
- Huang, X., Ding, S., Lang, L., & Gong, S. (2023). Compressive response of selective laser-melted lattice structures with different strut sizes based on theoretical, numerical and experimental approaches. Rapid Prototyping Journal, 29(2), 209–217. https://doi.org/10.1108/rpj-12-2021-0339
- Hříbalová, S., Uhlířová, T., & Pabst, W. (2021). Computer modeling of systematic processing defects on the thermal and elastic properties of open Kelvin-cell metamaterials. Journal of the European Ceramic Society, 41(14), 7130–7140. https://doi.org/10.1016/j.jeurceramsoc.2021.07.031
- Sun, Z., Guo, Y., & Shim, V. (2020). Characterisation and modeling of additively-manufactured polymeric hybrid lattice structures for energy absorption. International Journal of Mechanical Sciences, 191, 106101. https://doi.org/10.1016/j.ijmecsci.2020.106101
- Al-Ketan, O., & Al-Rub, R. K. A. (2019). Multifunctional Mechanical Metamaterials Based on Triply Periodic Minimal Surface Lattices. Advanced Engineering Materials, 21(10). https://doi.org/10.1002/adem.201900524
- Choukir, S., & Singh, C. (2022). Role of topology in dictating the fracture toughness of mechanical metamaterials. International Journal of Mechanical Sciences, 241, 107945. https://doi.org/10.1016/j.ijmecsci.2022.107945
- Apetre, N. A., Michopoulos, J. G., Rodriguez, S. N., Iliopoulos, A., Steuben, J. C., Graber, B. D., & Arcari, A. (2024). Towards Fatigue-tolerant Design of Additively Manufactured Strut-based Lattice Metamaterials. Journal of Computing and Information Science in Engineering, 24(5). https://doi.org/10.1115/1.4065201
- Li, X., Yu, X., Chua, J. W., Lee, H. P., Ding, J., & Zhai, W. (2021). Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption. Small, 17(24). https://doi.org/10.1002/smll.202100336
- Liu, X., Jeon, J. J., Tiplea, A. G., Li, Y., & Song, B. (2023, October). Design of Low Density Architectured Metamaterials With High Compressive and Torsional Stiffness. In ASME International Mechanical Engineering Congress and Exposition (Vol. 87615, p. V004T04A009). American Society of Mechanical Engineers. https://doi.org/10.1115/IMECE2023-110261
- Hussain, S., Nazir, A., Waqar, S., Ali, U., & Gokcekaya, O. (2023). Effect of additive manufactured hybrid and functionally graded novel designed cellular lattice structures on mechanical and failure properties. The International Journal of Advanced Manufacturing Technology, 128(11–12), 4873–4891. https://doi.org/10.1007/s00170-023-12201-7
- Zhao, M., Ji, B., Zhang, D. Z., Li, H., & Zhou, H. (2022). Design and mechanical performances of a novel functionally graded sheet-based lattice structure. Additive Manufacturing, 52, 102676. https://doi.org/10.1016/j.addma.2022.102676
- Xiao, S., Li, Q., Jia, H., Wang, F., Gao, J., Lv, W., Qi, J., Duan, S., Wang, P., & Lei, H. (2023). Mechanical responses and energy absorption characteristics of a novel functionally graded voxel lattice structure. Thin-Walled Structures, 193, 111244. https://doi.org/10.1016/j.tws.2023.111244
- Kappe, K., Hoschke, K., Riedel, W., & Hiermaier, S. (2023). Multi-objective optimization of additive manufactured functionally graded lattice structures under impact. International Journal of Impact Engineering, 183, 104789. https://doi.org/10.1016/j.ijimpeng.2023.104789
- Suzuki, J., & Matsushita, Y. (2023). Kelvin’s Tetrakaidecahedron as a Wigner–Seitz Cell Found in Spherically Microphase‐Separated BCC Lattice from AB Diblock Copolymer by Monte Carlo Simulation. Macromolecular Theory and Simulations, 32(5), 2300016. https://doi.org/10.1002/mats.202300016
- Shi, S., Zhou, X., Zhang, J., Chen, B., & Sun, Z. (2023). In-plane compressive response of composite sandwich panels with local-tight honeycomb cores. Composite Structures, 314, 116970. https://doi.org/10.1016/j.compstruct.2023.116970
- Yeshanew, E. S., Ahmed, G. M. S., Sinha, D. K., Badruddin, I. A., Kamangar, S., Alarifi, I. M., & Hadidi, H. M. (2023). Experimental investigation and crashworthiness analysis of 3D printed carbon PA automobile bumper to improve energy absorption by using LS-DYNA. Advances in Mechanical Engineering, 15(6), 16878132231181058. https://doi.org/10.1177/16878132231181058
- Ghanbari, J., & Panirani, P. N. (2024). A hybrid bio-inspired sandwich structures for high strain rate energy absorption applications. Scientific Reports, 14(1), 2865. https://doi.org/10.1038/s41598-024-53521-2
- Ramakrishna, D., & Bala Murali, G. (2023). Bio-inspired 3D-printed lattice structures for energy absorption applications: A review. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 237(3), 503-542. https://doi.org/10.1177/14644207221121948
- Ciliveri, S., & Bandyopadhyay, A. (2022). Influence of strut-size and cell-size variations on porous Ti6Al4V structures for load-bearing implants. Journal of the mechanical behavior of biomedical materials, 126, 105023. https://doi.org/10.1016/j.jmbbm.2021.105023
- Yang, X., & Keten, S. (2021). Multi-stability property of magneto-kresling truss structures. Journal of Applied Mechanics, 88(9), 091009. https://doi.org/10.1115/1.4051705
- Sypeck, D. J. (2005). Cellular truss core sandwich structures. Applied Composite Materials, 12, 229-246. https://doi.org/10.1007/s10443-005-1129-z
- Zhang, Z., Liu, L., Ballard, J., Usta, F., & Chen, Y. (2024). Unveiling the mechanics of deep-sea sponge-inspired tubular metamaterials: Exploring bending, radial, and axial mechanical behavior. Thin-Walled Structures, 196, 111476. https://doi.org/10.1016/j.tws.2023.111476