Have a personal or library account? Click to login
Antibacterial Ti-Cu and Ta-Cu Coatings for Endoprostheses Applied by Magnetron Sputtering onto Ti6Al4V Alloy Cover

Antibacterial Ti-Cu and Ta-Cu Coatings for Endoprostheses Applied by Magnetron Sputtering onto Ti6Al4V Alloy

Open Access
|Dec 2024

References

  1. R. Gotadki, Medical Implant Market Research Report, 2021.
  2. C. Pabinger, H. Lothaller, N. Portner, A. Geissler, Projections of hip arthroplasty in OECD countries up to 2050, HIP Int. 28 (2018) 498–506. https://doi.org/10.1177/1120700018757940
  3. W. Wang, K.W.K. Yeung, Bone grafts and biomaterials substitutes for bone defect repair: A review, Bioact. Mater. 2 (2017) 224–247. https://doi.org/10.1016/j.bioactmat.2017.05.007
  4. J. Raphel, M. Holodniy, S.B. Goodman, S.C. Heilshorn, Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants, Biomaterials. 84 (2016) 301–314. https://doi.org/10.1016/j.biomaterials.2016.01.016
  5. Swiss National Hip & Knee Joint Registry Report, Swiss Society of Orthopaedics and Traumatology, Basel, 2021.
  6. B. Lindeque, Z. Hartman, A. Noshchenko, M. Cruse, Infection After Primary Total Hip Arthroplasty, Orthopedics. 37 (2014) 257–265. https://doi.org/10.3928/01477447-20140401-08
  7. C. Guder, S. Gravius, C. Burger, D.C. Wirtz, F.A. Schildberg, Osteoimmunology: A Current Update of the Interplay Between Bone and the Immune System, Front. Immunol. 11 (2020). https://doi.org/10.3389/fimmu.2020.00058
  8. B.H. Kapadia, R.A. Berg, J.A. Daley, J. Fritz, A. Bhave, M.A. Mont, Periprosthetic joint infection, Lancet. 387 (2016) 386–394. https://doi.org/10.1016/S0140-6736(14)61798-0
  9. S. Hogan, N.T. Stevens, H. Humphreys, J.P. O’Gara, E. O’Neill, Current and Future Approaches to the Prevention and Treatment of Staphylococcal Medical Device-Related Infections, Curr. Pharm. Des. 21 (2014) 100–113. https://doi.org/10.2174/1381612820666140905123900
  10. Z. Yuan, Y. He, C. Lin, P. Liu, K. Cai, Antibacterial surface design of biomedical titanium materials for orthopedic applications, J. Mater. Sci. Technol. 78 (2021) 51–67. https://doi.org/10.1016/j.jmst.2020.10.066
  11. H.Y. Ahmadabadi, K. Yu, J.N. Kizhakkedathu, Surface modification approaches for prevention of implant associated infections, Colloids Surf. B Biointerfaces. 193 (2020) 111116. https://doi.org/10.1016/j.colsurfb.2020.111116
  12. D. Alontseva, B. Azamatov, Y. Safarova (Yantsen), S. Voinarovych, G. Nazenova, A Brief Review of Current Trends in the Additive Manufacturing of Orthopedic Implants with Thermal Plasma-Sprayed Coatings to Improve the Implant Surface Biocompatibility, Coatings. 13 (2023) 1175. https://doi.org/10.3390/coatings13071175
  13. А.А. Meleshko, A.G. Afinogenova, G.E. Afinogenov, A.A. Spiridonova, V.P. Tolstoy, Аntibacterial inorganic agents: efficiency of using multicomponent systems, Russ. J. Infect. Immun. 10 (2020) 639–654. http://dx.doi.org/10.15789/2220-7619-AIA-1512
  14. V. Vishwakarma, G. Kaliaraj, K. Amirtharaj Mosas, Multifunctional Coatings on Implant Materials—A Systematic Review of the Current Scenario, Coatings. 13 (2022) 69. https://doi.org/10.3390/coatings13010069
  15. J. Wilson, Metallic biomaterials, in: Fundamental Biomaterials: Metals, Elsevier, 2018, pp. 1–33. https://doi.org/10.1016/B978-0-08-102205-4.00001-5
  16. D. Alontseva, Y. Safarova (Yantsen), S. Voinarovych, A. Obrosov, R. Yamanoglu, F. Khoshnaw, et al., Biocompatibility and Corrosion of Microplasma-Sprayed Titanium and Tantalum Coatings versus Titanium Alloy, Coatings. 14 (2024) 206. https://doi.org/10.3390/coatings14020206
  17. Z. Ding, Q. Zhou, Y. Wang, Z. Ding, Y. Tang, Q. He, Microstructure and properties of monolayer, bilayer and multilayer Ta2O5-based coatings on biomedical Ti-6Al-4V alloy by magnetron sputtering, Ceram. Int. 47 (2021) 1133–1144. https://doi.org/10.1016/j.ceramint.2020.08.230
  18. T.C. Senocak, K.V. Ezirmik, F. Aysin, N. Simsek Ozek, S. Cengiz, Niobium-oxynitride coatings for biomedical applications: Its antibacterial effects and in-vitro cytotoxicity, Mater. Sci. Eng. C 120 (2021) 111662. https://doi.org/10.1016/j.msec.2020.111662
  19. S. Zhao, S. Liu, Y. Xue, N. Li, K. Xu, W. Qiu, et al., Microstructure and properties of monolayer Ta and multilayer Ta/Ti/Zr/Ta coatings deposited on biomedical Ti-6Al-4V alloy by magnetron sputtering, Coatings 13 (2023) 1234. https://doi.org/10.3390/coatings13071234
  20. V. Stranak, H. Wulff, P. Ksirova, C. Zietz, S. Drache, M. Cada, et al., Ionized vapor deposition of antimicrobial Ti–Cu films with controlled copper release, Thin Solid Films 550 (2014) 389–394. https://doi.org/10.1016/j.tsf.2013.11.001
  21. A. Bahrami, J.P. Álvarez, O. Depablos-Rivera, R. Mirabal-Rojas, A. Ruíz-Ramírez, S. Muhl, S.E. Rodil, Compositional and Tribo-Mechanical Characterization of Ti-Ta Coatings Prepared by Confocal Dual Magnetron Co-Sputtering, Adv. Eng. Mater. 20(3) (2018). https://doi.org/10.1002/adem.201700687
  22. G.A. Norambuena, R. Patel, M. Karau, C.C. Wyles, P.J. Jannetto, K.E. Bennet, et al., Antibacterial and Biocompatible Titanium-Copper Oxide Coating May Be a Potential Strategy to Reduce Periprosthetic Infection: An In Vitro Study, Clin. Orthop. Relat. Res. 475(3) (2017) 722–32. https://doi.org/10.1007/s11999-016-4713-7
  23. D. Wojcieszak, M. Osekowska, D. Kaczmarek, B. Szponar, M. Mazur, P. Mazur, et al., Influence of Material Composition on Structure, Surface Properties and Biological Activity of Nanocrystalline Coatings Based on Cu and Ti, Coatings 10(4) (2020) 343.
  24. A. Bahrami, C.F. Onofre Carrasco, A.D. Cardona, T. Huminiuc, T. Polcar, S.E. Rodil, Mechanical properties and microstructural stability of CuTa/Cu composite coatings, Surf. Coat. Technol. 364 (2019) 22–31. https://doi.org/10.1016/j.surfcoat.2019.02.072
  25. A. Wang, I.P. Jones, G. Landini, J. Mei, Y.Y. Tse, Y.X. Li, et al., Backscattered electron imaging and electron backscattered diffraction in the study of bacterial attachment to titanium alloy structure, J. Microsc. 270(1) (2018) 53–63. https://doi.org/10.1111/jmi.12649
  26. E.A. Lewallen, W.H. Trousdale, R. Thaler, J.J. Yao, W. Xu, J.M. Denbeigh, et al., Surface Roughness of Titanium Orthopedic Implants Alters the Biological Phenotype of Human Mesenchymal Stromal Cells., Tissue Eng. Part A 27(23–24) (2021) 1503–16. https://doi.org/10.1089/ten.TEA.2020.0369
  27. B. Jahani, X. Wang, The Effects of Surface Roughness on the Functionality of Ti13Nb13Zr Orthopedic Implants, Biomed. J. Sci. Tech. Res. 38(1) (2021). https://doi.org/10.26717/BJSTR.2021.38.006104
  28. I. Ilievska, V. Ivanova, D. Dechev, N. Ivanov, M. Ormanova, M.P. Nikolova, et al., Influence of Thickness on the Structure and Biological Response of Cu-O Coatings Deposited on cpTi, Coatings 14(4) (2024) 455. https://doi.org/10.3390/coatings14040455
  29. C. Zietz, A. Fritsche, B. Finke, V. Stranak, M. Haenle, R. Hippler, et al., Analysis of the Release Characteristics of Cu-Treated Antimicrobial Implant Surfaces Using Atomic Absorption Spectrometry, Bioinorg. Chem. Appl. 2012 (2012) 1–5. https://doi.org/10.1155/2012/850390
  30. M. Walczak, K. Pasierbiewicz, M. Szala, Effect of Ti6Al4V Substrate Manufacturing Technology on the Properties of PVD Nitride Coatings, Acta Phys. Pol. A 142 (6) (2023) 723. https://doi.org/10.12693/APhysPolA.142.723
  31. M. Jażdżewska, B. Majkowska-Marzec, A. Zieliński, R. Ostrowski, A. Frączek, G. Karwowska, J.M. Olive, Mechanical Properties and Wear Susceptibility Determined by Nanoindentation Technique of Ti13Nb13Zr Titanium Alloy after “Direct Laser Writing”. Materials, 16(13), (2023) 4834. https://doi.org/10.3390/ma16134834
  32. Y.C. Liu, T.W. Xu, B.Q. Su, B.J. Lv, H. Wang, Effect of strontium-doped coating prepared by microarc oxidation and hydrothermal treatment on apatite induction ability of Ti13Nb13Zr alloy in vitro, J. Mater. Res. 37 (16) (2022) 2657-2685. 10.1557/s43578-022-00626-x
  33. K. Piotrowska, M. Madej, J. Kowalczyk, K. Radoń-Kobus, The ınfluence of envıronmental condıtıons on the trıbologıcal propertıes of the Ti13Nb13Zr alloy, Metalurgija, 63 (1) (2024) 53-56.
  34. S. Chowdhury, N. Arunachalam, Surface functionalization of additively manufactured titanium alloy for orthopaedic implant applications, J. Manuf. Process., 102 (2023) 387-405. 10.1016/j.jmapro.2023.07.015
  35. V. Hutsaylyuk, M. Wachowski, B. Kovalyuk, V. Mocharskyi, O. Sitkar, L. Śnieżek, J. Zygmuntowicz, Mechanical properties of titanium grade 1 after laser shock wave treatment. Advances in Materials Science, 23(4) (2023) 48-61. https://doi.org/10.2478/adms-2023-0022
  36. M. Jażdżewska, B. Majkowska-Marzec, R. Ostrowski, J.M. Olive, Influence of surface laser treatment on mechanical properties and residual stresses of titanium and its alloys. Adv. Sci. Technol. Res. J., 17 (6) (2023) 27-38. https://doi.org/10.12913/22998624/172981
  37. Implants for surgery - Metallic materials - Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, ISO.org, 2016.
  38. B.N. Azamatov, D.L. Alontseva, A.A. Borisov, B. Maratuly, V.B. Ogay, A.A. Kurmanbaev, Magnetron sputtering on titanium alloy substrates of copper films with antibacterial properties against pseudomonas and staphylococcus, Bulletin of D. Serikbayev EKTU. 3 (2022) 40-51. https://doi.org/10.51885/1561-4212_2022_3_40
  39. W.C. Oliver, G.M. Pharr An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564–1583. https://doi.org/10.1557/JMR.1992.1564
  40. E. Avcu, Y. Yıldıran Avcu, F.E. Baştan, M.A.U. Rehman, F. Üstel, A.R. Boccaccini, Tailoring the surface characteristics of electrophoretically deposited chitosan-based bioactive glass composite coatings on titanium implants via grit blasting, Prog. Org. Coat. 123 (2018) 362–73. https://doi.org/10.1016/j.porgcoat.2018.07.021
  41. W. Qin, L.Fu,, T. Xie, J. Zhu, W.Yang, D. Li, L. Zhou, Abnormal hardness behavior of Cu-Ta films prepared by magnetron sputtering, J. Alloys Compd. 708 (2017) 1033-1037.
  42. G.Skordaris, K. D. Bouzakis, T.Kotsanis, P. Charalampous, E. Bouzakis, O. Lemmer, S. Bolz, Film thickness effect on mechanical properties and milling performance of nano-structured multilayer PVD coated tools, Surf. Coat. Technol. 307 (2016) 452-460.
  43. Verein-Deutscher-Ingenieure 1992 Daimler Benz Adhesion Test VDI 3198 (Dusseldorf: VDI Verlag) p. 7.
  44. V. Kuibida, P.Kokhanets, V. Lopatynska, Mechanism of strengthening the skeleton using plyometrics, J. Phys. Educ. Sport. 21 (7) (2021). https://doi.org/10.7752/jpes.2021.03166
  45. N. Hezil, L. Aissani, M. Fellah, M. Abdul Samad, A. Obrosov, C. Timofei, E. Marchenko, Structural, and tribological properties of nanostructured α + β type titanium alloys for total hip, J. Mater. Res. Technol. 19 (2022) 3568–3578. https://doi.org/10.1016/j.jmrt.2022.06.042
  46. Biological evaluation of medical devices, ISO 10993, 2009. Available from: IHS.
DOI: https://doi.org/10.2478/adms-2024-0021 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 23 - 41
Submitted on: Oct 25, 2024
Accepted on: Dec 10, 2024
Published on: Dec 24, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Darya Alontseva, Bagdat Azamatov, Alexander Borisov, Bauyrzhan Maratuly, Yuliya Safarova Yantsen, Sergii Voinarovych, Alexey Dzhes, Leszek Łatka, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.