Have a personal or library account? Click to login
Optimizing High-Performance Concrete Properties Containing Blast Furnace Slag and Marble Powder Cover

Optimizing High-Performance Concrete Properties Containing Blast Furnace Slag and Marble Powder

Open Access
|Sep 2024

References

  1. P.C. Aïtcin, J.M. Lessard, The composition and design of high-strength concrete and ultrahigh-strength concrete, Developments in the Formulation and Reinforcement of Concrete, Elsevier, 2019, pp. 171-192. Second Edition), Woodhead Publishing Series in Civil and Structural Engineering.
  2. E. Cerro-Prada, R. Pacheco-Torres, F. Varela, Effect of multi-walled carbon nanotubes on strength and electrical properties of cement mortar, Mater. 14 (2021) 79.
  3. A. Bahari, A. Sadeghi-Nik, F.U.A. Shaikh, A. Sadeghi-Nik, E. Cerro-Prada, E. Mirshafiei, M. Roodbari, Experimental studies on rheological, mechanical, and microstructure properties of self-compacting concrete containing perovskite nanomaterial, Struct. Concr. 23 (2022) 564-78.
  4. ACI 211.4R-08, Guide for selecting proportions for high-strength concrete using Portland cement and other cementitious materials, USA, 2008.
  5. A.K. Akhnoukh, Accelerated bridge construction projects using high performance concrete, Case Stud. Constr. Mater. 12 (2020) e00313.
  6. Z. Tang, W. Li, V.W.Y. Tam, C. Xue, Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials, Resour. Conserv. Recycl.: X. 6 (2020) 100036.
  7. B.S. Divsholi, T.Y.D. Lim, S. Teng, Durability properties and microstructure of ground granulated blast furnace slag cement concrete, Int. J. Concr. Struct. Mater. 8 (2014) 157-64.
  8. H. Beushausen, M. Alexander, Y. Ballim, Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios, Constr. Build. Mater. 29 (2012) 533-540.
  9. J.L. Wang, K.M. Niu, Z.F. Yang, M.K. Zhou, L.Q. Sun, G.J. Ke, Effects of fly ash and ground granulated blast-furnaces slag on properties of high-strength concrete, Key. Eng. Mater. 405-406 (2009) 219-25.
  10. S. Liu, Z. Wang, X. Li, Long-term properties of concrete containing ground granulated blast furnace slag and steel slag, Mag. Concr. Res. 66 (2014) 1095-103.
  11. H. Trong-Phuoc, S.H. Lanh, V.H. Quan, Experimental investigation on the performance of concrete incorporating fine dune sand and ground granulated blast-furnace slag, Constr. Build. Mater. 347 (2022) 128512.
  12. G. Pachideh, M. Gholhaki, Assessment of post-heat behavior of cement mortar incorporating silica fume and granulated blast-furnace slag, J. Struct. Fire Eng. 11 (2020) 221-46.
  13. X-Y. Wang and H-S. Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cem. Concr. Res. 40 (2010) 984-96.
  14. A.M. Mhaya, G.F. Huseien, A.R. Zainal Abidin, M. Ismail, Long-term mechanical and durable properties of waste tires rubber crumbs replaced GBFS modified concretes, Constr. Build. Mater. 256 (2020) 119505.
  15. P. Ganesh and A.R. Murthy, Tensile behaviour and durability aspects of sustainable ultra-high performance concrete incorporated with GGBS as cementitious material, Constr. Build. Mater. 197 (2019) 667-80.
  16. J. Ahmad, R. Martínez-García, M. Szelag, J. de-Prado-Gil, R. Marzouki, M. Alqurashi, E.E. Hussein, Effects of steel fibers (SF) and ground granulated blast furnace slag (GGBS) on recycled aggregate concrete, Mater. 14 (2021) 7497.
  17. A.A. Ramezanianpour, A. Pilvar, M. Mahdikhani, F. Moodi, Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength, Constr. Build. Mater. 25 (2011) 2472-9.
  18. S. Srikanth, C.B.R. Krishna, T. Srikanth, K.J.N. Sai Nitesh, V. Swamy Nadh, S. Kumar, S. Thanappan, Effect of nano ground granulated blast furnace slag (GGBS) volume % on mechanical behaviour of high-performance sustainable concrete, J. Nanomater. 2022 (2022) 5 pages. https://doi.org/10.1155/2022/3742194.
  19. R.B. Oza, M.Z. Kangda, M.R. Agrawal, P.R. Vakharia, D.M. Solanki, Marble dust as a binding material in concrete: A review, Mater. Today Proc. 60 (2022) 421-430.
  20. K. Vardhan, R. Siddique, S. Goyal, Strength, permeation and micro-structural characteristics of concrete incorporating waste marble, Constr. Build. Mater. 203 (2019) 45-55.
  21. H. Hebhoub, H. Aoun, M. Belachia, H. Houari, E. Ghorbel, Use of waste marble aggregates in concrete, Constr. Build. Mater. 25 (2011) 1167-71.
  22. A. Ergün, Effects of the usage of diatomite and waste marble powder as partial replacement of cement on the mechanical properties of concrete, Constr. Build. Mater. 25 (2011) 806-12.
  23. O. Boughamsa, H. Hebhoub, L. Kherref, M. Belachia, A. Abdelouahed, R. Chaher, Valorization of marble’s waste as a substitute in sand concrete, Adv. Concr. Constr. 9 (2020) 217-25.
  24. A. Chawla, K.I. Syed Ahmed Kabeer, A.K. Vyas, Evaluation of strength and durability of lean concrete mixes containing marble waste as fine aggregate, Eur. J. Environ. Civ. Eng. 24 (2020) 1398-413.
  25. A.A. Aliabdo, A.M.A. Elmoaty, E.M. Auda, Re-use of waste marble dust in the production of cement and concrete, Constr. Build. Mater. 50 (2014) 28-41.
  26. V. Kumar, S. Singla, R. Garg, Strength and microstructure correlation of binary cement blends in presence of waste marble powder. Mater. Today Proc. 43 (2021) 857-62.
  27. Y. Wang, J. Xiao, J. Zhang, Z. Duan, Mechanical behavior of concrete prepared with waste marble powder, Sustain. 14 (2022) 4170.
  28. H.Y. Aruntaş, M. Gürü, M. Dayı, İ. Tekin, Utilization of waste marble dust as an additive in cement production,Mater. Des.31(2010) 4039-42.
  29. V. Corinaldesi, G. Moriconi, T.R. Naik, Characterization of marble powder for its use in mortar and concrete,Constr. Build. Mater. 24(2010) 113-7.
  30. C. Karakurt and M. Dumangöz, Rheological and durability properties of self-compacting concrete produced using marble dust and blast furnace slag, Mater. 15 (2022) 1795.
  31. A. Yahia, K.H. Khayat, M. Sayed, Statistical modelling of the coupled effect of mix design and rebar spacing on restricted flow characteristics of SCC, Constr. Build. Mater. 37 (2012) 699-706.
  32. J. Goupy, L. Creighton, Introduction to design of experiments with JMP examples, 3rd ed., Cary (NC): SAS Institute, 2007, p. 438.
  33. J. Goupy, La méthode des plans d’expérience, [The experience plans method], Dunod, Paris, 1988.
  34. T. Hadji, S. Guettala, M. Quéneudec, Mix design of high performance concrete with different mineral additions, World J. Eng. 18 (2021) 767-79.
  35. H. Ben Salah, B. Dalila, T. Bachir, Using a mixture design method to optimize the behavior of high-performance sand concrete, World J. Eng. 20 (2023) 877-87.
  36. R.H. Bogue, in: Chemistry of Portland cement, 2nd ed., Reinhold Publishing Corp, New York (NY), 1955, p. 790.
  37. R. Chaid, R. Jauberthie, J. Zeghiche, F. Kherchi, Impact de la poudre de marbre conjuguée au calcaire du CEM II sur la durabilité du béton, Eur. J. Environ. Civ. Eng. 15 (2011) 427-45.
  38. K. Arroudj, A. Zenati, M.N. Oudjit, A. Bali, A. Tagnit-Hamou, Reactivity of fine quartz in presence of silica fume and slag, Engineering. 3 (2011) 569-76.
  39. J. Goupy, Les plans d’experiences [Design of experiments]. France: Revue MODULAD, Numero 34. 2006.
  40. ACI 211.1-91, Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, Farmington Hills, Michigan, 1991.
  41. G. Dreux, Concretes composition, Techniques de l’Ingenieur 2 (1982) 220.
  42. NF P 18-451, Fresh concrete, cone slump tests, French standards, France, 1981.
  43. NF EN 12390-3, Essais pour béton durci - Partie 3: résistance à la compression des éprouvettes [Tests for hardened concrete - Part 3: compressive strength of the samples], France, 2012.
  44. B. Mezghiche, Laboratory Testing of Construction Materials, Publication Universitaire Biskra, Algerie, 2005, p. 120.
  45. NF P 18-459, Concrete - Testing hardened: testing porosity and density, French standards, France, 2010.
  46. A. Rana, P. Kalla, L.J. Csetenyi, Sustainable use of marble slurry in concrete, J. Clean. Prod. 94 (2015) 304-11.
  47. B. Toufik, B. Bensaid, A. Kheireddine, E. Karim, K. El-Hadj, Prediction of the durability performance of ternary cement containing limestone powder and ground granulated blast furnace slag, Constr. Build. Mater. 209 (2019) 215-21.
  48. B. Liu, G. Luo, Y. Xie, Effect of curing conditions on the permeability of concrete with high volume mineral admixtures, Constr. Build. Mater. 167 (2018) 359-71.
  49. R.K. Majhi, A.N. Nayak, Production of sustainable concrete utilising high-volume blast furnace slag and recycled aggregate with lime activator, J. Clean. Prod. 255 (2020) 120188.
  50. M.A. Rashwan, T.M. Al - Basiony, A.O. Mashaly, M.M. Khalil, Behaviour of fresh and hardened concrete incorporating marble and granite sludge as cement replacement, J. Build. Eng. 32 (2020), 101697.
DOI: https://doi.org/10.2478/adms-2024-0018 | Journal eISSN: 2083-4799 | Journal ISSN: 1730-2439
Language: English
Page range: 89 - 110
Submitted on: Jul 2, 2024
Accepted on: Sep 3, 2024
Published on: Sep 14, 2024
Published by: Gdansk University of Technology
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Belkacem Edeb, Naas Allout, Mahmoud Benkhelil, Salim Guettala, published by Gdansk University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.